Third Edition

A Semantic Web Primer

Grigoris Antoniou, Paul Groth, Frank van Harmelen,
and Rinke Hoekstra

y % ﬁ
4
. '//i..
a9
Y s

(.S

-

-y 4
)
/ C
7%
&« 1
i -
B v

N

y
.

:
.
-

.00” .
»

’;’ ‘ . Ay
rey - -'an’
gt
oy
N
-
(>
o
s
.

Cooperative Information Systems
Michael P. Papazoglou, Joachim W. Schmidt, and John Mylopoulos, editors

Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering
Nikola K. Kasabov, 1996

Advances in Object-Oriented Data Modeling
Michael P. Papazoglou, Stefano Spaccapietra, and Zahir Tari, editors, 2000

Workflow Management: Models, Methods, and Systems
Wil van der Aalst and Kees Max van Hee, 2002

A Semantic Web Primer
Grigoris Antoniou and Frank van Harmelen, 2004

Aligning Modern Business Processes and Legacy Systems
Willem-Jan van den Heuvel, 2006

A Semantic Web Primer, second edition
Grigoris Antoniou and Frank van Harmelen, 2008

Service-Oriented Computing
Dimitrios Georgakopoulos and Mike P. Papazoglou, editors, 2008

At Your Service: Service-Oriented Computing from an EU Perspective
Elisabetta Di Nitto, Anne-Marie Sassen, Paolo Traverso and Arian Zwegers, editors,
2009

Metamodeling for Method Engineering
Manfred A. Jeusfeld, Matthias Jarke and John Mylopoulos, editors, 2009

Social Modeling for Requirements Engineering
Eric Yu, Paolo Giorgini, Neil Maiden and John Mylopoulos, ediorts, 2011

Modeling Business Processes: A Petri Net-Oriented Approach
Wil van der Aalst and Christian Stahl, 2011

A Semantic Web Primer; third edition
Grigoris Antoniou, Paul Groth, Frank van Harmelen and Rinke Hoekstra, 2012

A
Semantic Web

Primer
third edition

Grigoris Antoniou
Paul Groth
Frank van Harmelen

Rinke Hoekstra

The MIT Press
Cambridge, Massachusetts
London, England

(© 2012 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic
or mechanical means (including photocopying, recording, or information storage and retrieval)
without permission in writing from the publisher.

This book was set in 10/13 Palatino by the authors using ISTEX 2¢.
Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Antoniou, G. (Grigoris)
A Semantic Web primer / Grigoris Antoniou ... [et al.]. — 3rd ed.

p- cm. — (Cooperative information systems)
Rev ed. of: A Semantic Web primer / by Grigoris Antoniou. 2nd ed., c2008.
Includes bibliographical references and index.
ISBN 978-0-262-01828-9 (hardcover : alk. paper)
1. Semantic Web. I. Antoniou, G. (Grigoris) II. Antoniou, G. (Grigoris) Semantic
Web primer.
TK5105.88815.A58 2012
025.04°27—dc23

2012008455

10 9 8 7 6 5 4 3 21

To Konstantina, Vangelis and Giorgos

G.A.

To Thomas Groth - Professor

PG.

Contents

List of Figures

Series Foreword

1 The Semantic Web Vision

2

1.1
1.2
1.3
1.4
1.5

Introduction
Semantic Web Technologies
A Layered Approach
Book Overview
Summary

Describing Web Resources: RDF

2.1
2.2
23
24
2.5
2.6
2.7
2.8
29

Introduction
RDF:DataModel
RDF Syntaxes
RDFS: Adding Semantics
RDF Schema: The Language
RDF and RDF Schema in RDF Schema
An Axiomatic Semantics for RDF and RDF Schema
A Direct Inference System for RDFand RDFS
Summary e

Querying the Semantic Web

3.1
3.2
33
34
35
3.6
3.7
3.8
39

SPARQL Infrastructure
Basics: Matching Patternso L.
Filters
Constructs for Dealing with an Open World
Organizing Result Sets
Other Forms of SPARQL Queries
Querying Schemas oo
Adding Information with SPARQL Update
The Follow Your Nose Principle

3.10 Summary ...

vii

xi

xiii

—

16
19
20

23
23
25
31
40
44
51
55
62
63

viii CONTENTS
4 Web Ontology Language: OWL2 91
4.1 Introduction 91
4.2 Requirements for Ontology Languages 92
4.3 Compatibility of OWL2 with RDF/RDFS 97
44 The OWL Language 100
45 OWL2Profiles 123
4.6 SUMMALY 125
5 Logic and Inference: Rules 131
5.1 Introduction 131
5.2 Example of Monotonic Rules: Family Relationships 137
5.3 Monotonic Rules: Syntax, 138
5.4 Monotonic Rules: Semantics 141
5.5 OWL2 RL: Description Logic Meets Rules 145
5.6 Rule Interchange Format: RIF 148
5.7 Semantic Web Rules Language (SWRL) 155
5.8 Rulesin SPARQL:SPIN 156
5.9 Nonmonotonic Rules: Motivation and Syntax 158
5.10 Example of Nonmonotonic Rules: Brokered Trade 161
5.11 Rule Markup Language (RuleML) 165
5.12 Summary e 168
6 Applications 175
6.1 GoodRelations 176
6.2 BBCATItists 180
6.3 BBC World Cup 2010 Website 182
6.4 GovernmentData L 185
6.5 New YorkTimes 188
6.6 SigmaandSindice oo 189
6.7 OpenCalais 190
6.8 Schema.org 192
6.9 Summary 192
7 Ontology Engineering 193
7.1 Introduction L 193
7.2 Constructing Ontologies Manually 194
7.3 Reusing Existing Ontologies 198
7.4 Semiautomatic Ontology Acquisition. 201
7.5 Ontology Mapping e 205
7.6 Exposing Relational Databases 208
7.7 Semantic Web Application Architecture 210
8 Conclusion 221
8.1 Principles 222

82 WhereNext?

CONTENTS ix
A XML Basics 227
A.1 The XML Language 227
A2 Structuring 233
A3 NameSPaCeS . . . v v v v e e e e e e 248
A.4 Addressing and Querying XML Documents 251
A5 Processingo .. e e e 257
Index 266

List of Figures

1.1
1.2
1.3
1.4

2.1
2.2
23
24
2.5
2.6
2.7

3.1

4.1
4.2

5.1

6.1

6.2
6.3
6.4
6.5

7.1

Al
A2
A3
A4
AS
A.6

Structured and unstructured dataontheweb 3
Web architecture for linkeddata 6
Ahierarchy 11
A layered approach to the SemanticWeb 17
An RDF statement represented graphically 27
AnRDFgraph 28
Anexpanded RDF graph 28
An example of reification 30
A hierarchy of classes 42
RDFand RDFSlayers 45
Class hierarchy for the motor vehicles example 51
A SPARQL query with LIMIT 74
Subclass relationships between OWL2 and RDF/RDFS 99
Property chains (dotted lines are inferred by the reasoner) 110
RuleML vocabulary 166
Triples extracted from RDFa markup in the product page for a super-

Man CoStUMEo vt 178
Typical page from BBC World Cup website 184
Part of the BBC’s sports tournament ontology 185
Part of the BBC’s Olympics ontology 186
Objects and relations recognized by OpenCalais 191
Semantic Web knowledge management architecture 210
Tree representation of an XML document 232
Tree representation of a library document 253
Tree representation of query 4 255
Tree representation of query 5 L. 256
Atemplate 260
XSLT as tree transformation 265

X1

Series Foreword

The traditional view of information systems as tailor-made, cost-intensive database ap-
plications is changing rapidly. The change is fueled partly by a maturing software
industry, which is making greater use of off-the-shelf generic components and stan-
dard software solutions, and partly by the onslaught of the information revolution. In
turn, this change has resulted in a new set of demands for information services that
are homogeneous in their presentation and interaction patterns, open in their software
architecture, and global in their scope. The demands have come mostly from applica-
tion domains such as e-commerce and banking, manufacturing (including the software
industry itself), training, education, and environmental management, to mention just a

few.

Future information systems will have to support smooth interaction with a large
variety of independent multivendor data sources and legacy applications, running on
heterogeneous platforms and distributed information networks. Metadata will play a
crucial role in describing the contents of such data sources and in facilitating their

integration.

As well, a greater variety of community-oriented interaction patterns will have to
be supported by next-generation information systems. Such interactions may involve
navigation, querying and retrieval, and will have to be combined with personalized no-

tification, annotation, and profiling mechanisms. Such interactions will also have to be

Xiii

X1v Series Foreword

intelligently interfaced with application software, and will need to be dynamically inte-
grated into customized and highly connected cooperative environments. Moreover, the
massive investments in information resources, by governments and businesses alike,

call for specific measures that ensure security, privacy, and accuracy of their contents.

All these are challenges for the next generation of information systems. We call

such systems cooperative information systems, and they are the focus of this series.

In lay terms, cooperative information systems are serving a diverse mix of demands
characterized by content—community—commerce. These demands are originating in
current trends for off-the-shelf software solutions, such as enterprise resource planning

and e-commerce systems.

A major challenge in building cooperative information systems is to develop tech-
nologies that permit continuous enhancement and evolution of current massive invest-
ments in information resources and systems. Such technologies must offer an appro-

priate infrastructure that supports not only development but also evolution of software.

Early research results on cooperative information systems are becoming the core
technology for community-oriented information portals or gateways. An informa-
tion gateway provides a “one-stop-shopping” place for a wide range of information

resources and services, thereby creating a loyal user community.

The research advances that will lead to cooperative information systems will
not come from any single research area within the field of information technology.
Database and knowledge-based systems, distributed systems, groupware, and graphi-
cal user interfaces have all matured as technologies. While further enhancements for
individual technologies are desirable, the greatest leverage for technological advance-
ment is expected to come from their evolution into a seamless technology for building

and managing cooperative information systems.

The MIT Press Cooperative Information Systems series will cover this area through

textbooks, and research editions intended for the researcher and the professional who

Series Foreword XV

wishes to remain up to date on current developments and future trends.

The series will include three types of books:

e Textbooks or resource books intended for upper-level undergraduate or graduate

level courses

e Research monographs, which collect and summarize research results and devel-

opment experiences over a number of years
e Edited volumes, including collections of papers on a particular topic

Authors are invited to submit to the series editors book proposals that in-
clude a table of contents and sample book chapters. All submissions will

be reviewed formally and authors will receive feedback on their proposals.

Data in a data source are useful because they model some part of the real world, its
subject matter (or application, or domain of discourse). The problem of data semantics
is establishing and maintaining the correspondence between a data source, hereafter a
model, and its intended subject matter. The model may be a database storing data about
employees in a company, a database schema describing parts, projects, and suppliers,
a website presenting information about a university, or a plain text file describing the
battle of Waterloo. The problem has been with us since the development of the first
databases. However, the problem remained under control as long as the operational
environment of a database remained closed and relatively stable. In such a setting, the
meaning of the data was factored out from the database proper and entrusted to the
small group of regular users and application programs.

The advent of the web has changed all that. Databases today are made available,
in some form, on the web where users, application programs, and uses are open-ended
and ever changing. In such a setting, the semantics of the data has to be made avail-
able along with the data. For human users, this is done through an appropriate choice

of presentation format. For application programs, however, this semantics has to be

Xvi Series Foreword

provided in a formal and machine-processable form. Hence the call for the Semantic
Web.!

Not surprisingly, this call by Tim Berners-Lee has received tremendous attention
by researchers and practitioners alike. There is now an International Semantic Web

3 as well as indus-

Conference series,> a Semantic Web Journal published by Elsevier,
trial committees that are looking at the first generation of standards for the Semantic
Web.

The current book constitutes a timely publication, given the fast-moving nature of
Semantic Web concepts, technologies, and standards. The book offers a gentle intro-
duction to Semantic Web concepts, including XML, DTDs, and XML schemas, RDF
and RDFS, OWL, logic, and inference. Throughout, the book includes examples and
applications to illustrate the use of concepts.

We are pleased to include this book on the Semantic Web in the series on Coopera-

tive Information Systems. We hope that readers will find it interesting, insightful, and

useful.
John Mylopoulos Michael Papazoglou
jm@cs.toronto.edu M.P.Papazoglou@kub.nl
Dept. of Computer Science INFOLAB
University of Toronto P.O. Box 90153
Toronto, Ontario LE Tilburg
Canada The Netherlands

ITim Berners-Lee and Mark Fischetti, Weaving the Web: The Original Design and Ultimate Destiny of
the World Wide Web by Its Inventor. San Francisco: HarperCollins, 1999.

Ziswc.semanticweb.org.

3www.semanticwebjournal.org.

Chapter 1

The Semantic Web Vision

1.1 Introduction

1.1.1 Motivation for the Semantic Web

The general vision of a “semantic web” can be summarized in a single phrase: to make
the web more accessible to computers. The current web is a web of text and pictures.
Such media are very useful for people, but computers play a very limited role on the
current web: they index keywords, and they ship information from servers to clients,
but that is all. All the intelligent work (selecting, combining, aggregating, etc.) has
to be done by the human reader. What if we could make the web richer for machines,
so that it would be full of machine readable, machine “understandable” data? Such
a web would facilitate many things that are impossible on the current web: Search
would be no longer limited to simply looking for keywords, but could become more
semantic, which would include looking for synonyms, being aware of homonyms, and
taking into account context and purpose of the search query. Websites could become
more personalized if personal browsing agents were able to understand the contents

of a web page and tailor it to personal interest profiles. Linking could become more

1

2 The Semantic Web Vision

semantic by deciding dynamically which pages would be useful destinations, based
on the current user’s activities, instead of having to hardwire the same links for all
users ahead of time. It would be possible to integrate information across websites,
instead of users currently having to do a “mental copy-paste”” whenever they find some

information on one site that they want to combine with information from another.

1.1.2 Design Decisions for the Semantic Web

There are many ways of going about building a more “semantic”” web. One way would
be to build a “Giga Google,” relying on “the unreasonable effectiveness of data™' to
find the right correlations among words, between terms and context, etc. The plateau
in search engine performance that we have been witnessing over the past few years
seems to suggest that there are limitations to this approach: none of the search giants
have been able to go beyond returning simply flat lists of disconnected pages.

The Semantic Web (or The Web of Data, as it is becoming known in recent years?)

follows different design principles, which can be summarized as follows:

1. make structured and semi-structured data available in standardized formats on

the web;

2. make not just the datasets, but also the individual data-elements and their rela-

tions accessible on the web;

3. describe the intended semantics of such data in a formalism, so that this intended

semantics can be processed by machines.

The decision to exploit structured and semi-structured data is based on a key obser-

vation, namely that underlying the current unstructured “web of text and pictures” is

! The Unreasonable Effectiveness of Data Alon Halevy, Peter Norvig, and Fernando Pereira, IEEE Intel-
ligent Systems, March/April 2009, pgs 8-12, http://static.googleusercontent.com/external _content/
untrusted dlcp/research.google.com/en//pubs/archive/35179.pdf.

2 http://www.readwriteweb.com/archives/web of data_machine accessible information.
php.

1.1 Introduction 3

Figure 1.1: Structured and unstructured data on the web

actually a very large amount of structured and semi-structured data. The vast majority
of web content is being generated from databases and content management systems
containing carefully structured datasets. However, the often rich structure that is avail-
able in such datasets is almost completely lost in the process of publishing such struc-
tured data as human-readable Hypertext Markup Language (HTML) pages (see figure
1.1). A key insight is that we would have made major strides towards the vision of a
more Semantic Web if only we could publish and interlink the underlying structured
datasets (instead of just publishing and interlinking the HTML pages after much of the

underlying structure has been lost).

4 The Semantic Web Vision

1.1.3 Basic Technology for the Semantic Web

The aforementioned three design principles have been translated into actual technology,

and much of this book will be devoted to describing just that technology:

1. use labeled graphs as the data model for objects and their relations, with ob-
jects as nodes in the graph, and the edges in the graph depicting the relations
between these objects. The unfortunately named “Resource Descripion Frame-

work” RDF? is used as the formalism to represent such graphs.

2. use web identifiers (Uniform Resource Identifiers - URI) to identify the individual
data-items and their relations that appear in the datasets. Again, this is reflected

in the design of RDF.

3. use ontologies (briefly: hierarchical vocabularies of types and relations) as the
data model to formally represent the intended semantics of the data. Formalisms
such as RDF Schema and The Web Ontology Language (OWL) are used for this

purpose, again using URIs to represent the types and their properties.

1.1.4 From Data to Knowledge

It is important to realize that in order to really capture the intended semantics of the
data, a formalism such as RDF Schema and OWL are not just data-description lan-
guages, but are actually lightweight knowledge representation languages. They are
“logics” that allow the inference of additional information from the explicitly stated in-
formation. RDF Schema is a very low expressivity logic that allows some very simple
inferences, such as property inheritance over a hierarchy of types and type-inference of
domain and range restrictions. Similarly, OWL is somewhat richer (but still relatively
lightweight) logic that allows additional inferences such as equality and inequality,

number restrictions, existence of objects and others. Such inferences in RDF Schema

3Perhaps “Rich Data Format” would be a better name.

1.1 Introduction 5

and OWL give publishers of information the possibility to create a minimal lowerbound
of facts that readers must believe about published data. Additionally, OWL gives in-
formation publishers the possibility to forbid readers of information to believe certain
things about the published data (at least as long as everybody intends to stay consistent

with the published ontology).

Together, performing such inferences over these logics amounts to imposing both a
lower bound and an upper bound on the intended semantics of the published data. By
increasingly refining the ontologies, these lower and upper bounds can be moved arbi-
trarily close together, thereby pinning down ever more precisely the intended semantics

of the data, to the extent required by the use cases at hand.

1.1.5 The Web Architecture of the Semantic Web

A key aspect of the traditional web is the fact that its content is distributed, both in
location and in ownership: web pages that link to each other often live on different
web servers, and these servers are in different physical locations and owned by differ-
ent parties. A crucial contributor to the growth of the web is the fact that “anybody
can say anything about anything,”* or more precisely: anybody can refer to anybody’s
web page without having to negotiate first about permissions or inquire about the right
address or identifier to use. A similar mechanism is at work in the Semantic Web (see
figure 1.2): a first party can publish a dataset on the web (left side of the diagram), a
second party can independently publish a vocabulary of terms (right side of the dia-
gram), and a third party may decide to annotate the object of the first party with a term
published by the second party, without asking for permission from either of them, and
in fact without either of these two having to even know about it. It is this decoupling

that is the essence of the weblike nature of the Semantic Web.

4 http://www.w3.org/Designlssues/RDFnot.html.

6 The Semantic Web Vision

http://.../o
has-some-relation-to

: http://.../t

Object: \
http://.../o different _—

7 owners & locations

Term:
http://.../t

Figure 1.2: Web architecture for linked data

1.1.6 How to Get There from Here

Of course, some significant steps are required in order to make the above vision and

architectural principles an implemented reality:

1. We must agree on standard syntax to represent data and metadata.

2. We must have sufficient agreement on the metadata vocabularies in order to share

intended semantics of the data.

3. We must publish large volumes of data in the formats of step 1, using the vocab-

ularies of step 2.

Over the past decade (the earliest Semantic Web projects date from the last years
of the twentieth century), substantial progress has been made on all three of these
steps: the languages RDF, RDF Schema, and OWL (and their variations, such as RDFa,
OWL2, etc.) have all acquired the formal support of the World Wide Web Consortium
(W3C), elevating them to de facto standards on the web. Many thousands of vocabu-
laries have been published in these formats® and convergence among these vocabular-

ies is beginning to occur, both as a result of automated ontology mapping technology

3 http:/ /swoogle.umbc.edu/.

1.2 Semantic Web Technologies 7

and under the pressure of social and economic demands (e.g., the development of the
schema.org vocabulary).® And the growth of the Linked Data Cloud’ has resulted in
many billions of objects and their relations becoming available online, using shared

syntax and vocabularies.

1.1.7 Where We Are Now

When compared with the situation at the publication of the first edition of this Se-
mantic Web Primer, in 2003, many of the building blocks are now in place. There
is rapidly maturing technology to support all phases of deployment of Semantic Web
technology, and the number of substantial adoptions, both in commercial and public
organizations, is growing rapidly. However, major challenges remain, such as dealing
with the ever-increasing scale, lowering the barrier of adoption, and of course fighting

that omnipresent bane of information systems: semantic heterogeneity.

1.2 Semantic Web Technologies

1.2.1 Explicit Metadata

Currently, web content is formatted for human readers rather than programs. HTML is
the predominant language in which web pages are written (directly or using tools). A

portion of a typical web page of a physical therapist might look like this:

<h1>Agilitas Physiotherapy Centre</h1>

Welcome to the Agilitas Physiotherapy Centre home page.
Do you feel pain? Have you had an injury? Let our staff
Lisa Davenport, Kelly Townsend (our lovely secretary)

and Steve Matthews take care of your body and soul.

% http://schema.org.
7 http:/linkeddata.org.

8 The Semantic Web Vision

<h2>Consultation hours< /h2>

Mon 1lam - 7pm

Tue 11lam - 7pm

Wed 3pm - 7pm

Thu 11am - 7pm

Fri 11am - 3pm<p>

But note that we do not offer consultation
during the weeks of the

State of Origin games.

For people the information is presented in a satisfactory way, but machines will have
problems. Keyword-based searches will identify the words physiotherapy and consul-
tation hours. And an intelligent agent might even be able to identify the personnel
of the center. But it will have trouble distinguishing the therapists from the secretary,
and even more trouble finding the exact consultation hours (for which it would have to
follow the link to the State of Origin games to find when they take place).

The Semantic Web approach to solving these problems is not the development of
superintelligent agents. Instead it proposes to attack the problem from the web page
side. If HTML is replaced by more appropriate languages, then web pages can carry
their content on their sleeve. In addition to containing formatting information aimed at
producing a document for human readers, they could contain information about their
content.

A first step in this direction is eXtensible Markup Language (XML), which allows
one to define the structure of information on web pages. In our example, there might

be information such as:

<company>
<treatmentOffered>Physiotherapy< /treatmentOffered>

<companyName>Agilitas Physiotherapy Centre</companyName>

1.2 Semantic Web Technologies 9

<staff>
<therapist>Lisa Davenport< /therapist>
<therapist>Steve Matthews< /therapist>
<secretary>Kelly Townsend< /secretary>
< /staff>

< /company>

This representation is far more easily processable by machines. In particular, it
is useful for exchanging information on the web, which is one of the most prominent
application areas of XML technology.

However, XML still remains at the syntactic level, as it describes the structure
of information, but not its meaning. The basic language of the Semantic Web is RDF,
which is a language for making statements about pieces of information. In our example,

such statements include:

Company A offer physiotherapy.
The name of A is "Agitilitas Physiotherapy".
Lisa Davenport is a therapist.

Lisa Davenport works for A.

To a human reader, the difference between the XML representation and a list of RDF
statements may appear minimal, but they are quite different in nature: XML describes
structure while RDF makes statements about pieces of information.®

The term metadata refers to such information: data about data. Metadata captures

part of the meaning of data, thus the term semantic in Semantic Web.

8 A human reader assigns meaning to the XML representation based on the chosen tag names, but this is
not so for machine processors.

10 The Semantic Web Vision

1.2.2 Ontologies

The term ontology originates from philosophy. In that context, it is used as the name
of a subfield of philosophy, namely, the study of the nature of existence (the literal
translation of the Greek word OvToMovyia), the branch of metaphysics concerned with
identifying, in the most general terms, the kinds of things that actually exist, and how
to describe them. For example, the observation that the world is made up of specific
objects that can be grouped into abstract classes based on shared properties is a typical
ontological commitment.

However, in more recent years, onfology has become one of the many words hi-
jacked by computer science and given a specific technical meaning that is rather dif-
ferent from the original one. Instead of “ontology” we now speak of “an ontology.”
For our purposes, we will use T. R. Gruber’s definition, later refined by R. Studer: An
ontology is an explicit and formal specification of a conceptualization.

In general, an ontology describes formally a domain of discourse. Typically, an
ontology consists of a finite list of terms and the relationships between these terms. The
terms denote important concepts (classes of objects) of the domain. For example, in
a university setting, staff members, students, courses, lecture theaters, and disciplines
are some important concepts.

The relationships typically include hierarchies of classes. A hierarchy specifies a
class C' to be a subclass of another class C” if every object in C' is also included in
C’. For example, all faculty are staff members. Figure 1.3 shows a hierarchy for the
university domain.

Apart from subclass relationships, ontologies may include information such as
e properties (X teaches Y),
e value restrictions (only faculty members may teach courses),

e disjointness statements (faculty and general staff are disjoint),

1.2 Semantic Web Technologies 11

university
people

technical
support
staff

academic undergraduate postgraduate
staff

research
staff

Figure 1.3: A hierarchy

e gspecifications of logical relationships between objects (every department must

include at least ten faculty members).

In the context of the web, ontologies provide a shared understanding of a domain.
Such a shared understanding is necessary to overcome differences in terminology. One
application’s zip code may be the same as another application’s postcode. Another
problem is that two applications may use the same term with different meanings. In
university A, a course may refer to a degree (like computer science), while in university
B it may mean a single subject (CS 101). Such differences can be overcome by map-
ping the particular terminology to a shared ontology or by defining direct mappings
between the ontologies. In either case, it is easy to see that ontologies support semantic
interoperability.

Ontologies are useful for the organization and navigation of websites. Many web-
sites today expose on the left-hand side of the page the top levels of a concept hierarchy
of terms. The user may click on one of them to expand the subcategories.

Also, ontologies are useful for improving the accuracy of web searches. The search

12 The Semantic Web Vision

engines can look for pages that refer to a precise concept in an ontology instead of
collecting all pages in which certain, generally ambiguous, keywords occur. In this
way, differences in terminology between web pages and queries can be overcome.

In addition, web searches can exploit generalization/specialization information. If
a query fails to find any relevant documents, the search engine may suggest to the user a
more general query. Itis even conceivable for the engine to run such queries proactively
to reduce the reaction time in case the user adopts a suggestion. Or if too many answers
are retrieved, the search engine may suggest to the user some specializations.

In Artificial Intelligence (AI) there is a long tradition of developing and using on-
tology languages. It is a foundation Semantic Web research can build on. At present,

the most important ontology languages for the web are the following:

e RDF Schema is a vocabulary description language for describing properties and
classes of RDF resources, with a semantics for generalization hierarchies of such
properties and classes. In addition, domain and range of properties may be de-

fined.

e OWL is a richer vocabulary description language for describing properties and
classes, such as relations between classes (e.g., disjointness), cardinality (e.g.,
“exactly one”), equality, richer typing of properties, characteristics of properties

(e.g., symmetry), and enumerated classes.

1.2.3 Logic

Logic is the discipline that studies the principles of reasoning; it goes back to Aristotle.
In general, logic first offers formal languages for expressing knowledge. Second, logic
provides us with well-understood formal semantics: in most logics, the meaning of
sentences is defined without the need to operationalize the knowledge. Often we speak
of declarative knowledge: we describe what holds without caring about how it can be

deduced.

1.2 Semantic Web Technologies 13

And third, automated reasoners can deduce (infer) conclusions from the given
knowledge, thus making implicit knowledge explicit. Such reasoners have been stud-
ied extensively in Al. Here is an example of an inference. Suppose we know that all
professors are faculty members, that all faculty members are staff members, and that

Michael is a professor. In predicate logic the information is expressed as follows:

prof(X) — faculty(X)
faculty(X) — staff(X)

prof(michael)
Then we can deduce the following:

faculty(michael)
staff(michael)

prof(X) — staff(X)

Note that this example involves knowledge typically found in ontologies. Thus logic
can be used to uncover ontological knowledge that is implicitly given. By doing so, it
can also help uncover unexpected relationships and inconsistencies.

But logic is more general than ontologies. It can also be used by intelligent agents
for making decisions and selecting courses of action. For example, a shop agent may

decide to grant a discount to a customer based on the rule
loyalCustomer(X) — discount(X,5%)

where the loyalty of customers is determined from data stored in the corporate database.

Generally there is a trade-off between expressive power and computational effi-
ciency. The more expressive a logic is, the more computationally expensive it becomes
to draw conclusions. And drawing certain conclusions may become impossible if non-
computability barriers are encountered. Luckily, most knowledge relevant to the Se-

mantic Web seems to be of a relatively restricted form. For example, our previous

14 The Semantic Web Vision

examples involved rules of the form, “If conditions, then conclusion,” where condi-
tions and conclusion are simple statements, and only a finite number of objects need
to be considered. This subset of logic, called Horn logic, is tractable and supported by
efficient reasoning tools.

An important advantage of logic is that it can provide explanations for conclusions:
the series of inference steps can be retraced. Moreover, Al researchers have developed
ways of presenting an explanation in a human-friendly way, by organizing a proof as a
natural deduction and by grouping a number of low-level inference steps into metasteps
that a person will typically consider a single proof step. Ultimately an explanation will
trace an answer back to a given set of facts and the inference rules used.

Explanations are important for the Semantic Web because they increase users’
confidence in Semantic Web agents (see the previous physiotherapy example). Tim
Berners-Lee speaks of an “Oh yeah?” button that would ask for an explanation.

Explanations will also be necessary for activities between agents. While some
agents will be able to draw logical conclusions, others will only have the capability to
validate proofs, that is, to check whether a claim made by another agent is substanti-
ated. Here is a simple example. Suppose agent 1, representing an online shop, sends
a message “You owe me $80” (not in natural language, of course, but in a formal,
machine-processable language) to agent 2, representing a person. Then agent 2 might

ask for an explanation, and agent 1 might respond with a sequence of the form

Web log of a purchase over $80
Proof of delivery (for example, tracking number of UPS)

Rule from the shop’s terms and conditions:

purchase(X, Item) A price(Item, Price) A delivered(Item, X))

— owes(X, Price)

Thus facts will typically be traced to some web addresses (the trust of which will be

1.2 Semantic Web Technologies 15

verifiable by agents), and the rules may be a part of a shared commerce ontology or the
policy of the online shop.

For logic to be useful on the web it must be usable in conjunction with other data,
and it must be machine-processable as well. Therefore, there is ongoing work on rep-
resenting logical knowledge and proofs in web languages. Initial approaches work at
the level of XML, but in the future rules and proofs will need to be represented at the

level of RDF and ontology languages.

1.2.4 The Semantic Web versus Artificial Intelligence

As we have said, most of the technologies needed for the realization of the Semantic
Web build on work in the area of artificial intelligence. Given that Al has a long
history, not always commercially successful, one might worry that, in the worst case,
the Semantic Web will repeat AI’s errors: big promises that raise too high expectations,
which turn out not to be fulfilled (at least not in the promised time frame).

This worry is unjustified. The realization of the Semantic Web vision does not rely
on human-level intelligence; in fact, as we have tried to explain, the challenges are
approached in a different way. The full problem of Al is a deep scientific one, perhaps
comparable to the central problems of physics (explain the physical world) or biology
(explain the living world). So seen, the difficulties in achieving human-level Artificial
Intelligence within ten or twenty years, as promised at some points in the past, should
not have come as a surprise.

But on the Semantic Web partial solutions work. Even if an intelligent agent is not
able to come to all conclusions that a human user might, the agent will still contribute
to a web much superior to the current one. This brings us to another difference. If the
ultimate goal of Al is to build an intelligent agent exhibiting human-level intelligence
(and higher), the goal of the Semantic Web is to assist human users in their day-to-day

online activities.

16 The Semantic Web Vision

It is clear that the Semantic Web makes extensive use of current Al technology and
that advances in that technology will lead to a better Semantic Web. But there is no
need to wait until Al reaches a higher level of achievement; current Al technology is

already sufficient to go a long way toward realizing the Semantic Web vision.

1.3 A Layered Approach

The development of the Semantic Web proceeds in steps, each step building a layer
on top of another. The pragmatic justification for this approach is that it is easier to
achieve consensus on small steps, whereas it is much harder to get everyone on board
if too much is attempted. Usually there are several research groups moving in different
directions; this competition of ideas is a major driving force for scientific progress.
However, from an engineering perspective there is a need to standardize. So, if most
researchers agree on certain issues and disagree on others, it makes sense to fix the
points of agreement. This way, even if the more ambitious research efforts should fail,
there will be at least partial positive outcomes.

Once a standard has been established, many more groups and companies will adopt
it instead of waiting to see which of the alternative research lines will be successful in
the end. The nature of the Semantic Web is such that companies and single users must
build tools, add content, and use that content. We cannot wait until the full Semantic
Web vision materializes — it may take another ten years for it to be realized to its full
extent (as envisioned today, of course).

In building one layer of the Semantic Web on top of another, two principles should

be followed:

e Downward compatibility. Agents fully aware of a layer should also be able to
interpret and use information written at lower levels. For example, agents aware
of the semantics of OWL can take full advantage of information written in RDF

and RDF Schema.

1.3 A Layered Approach 17

Rules Trust
Data Proof o
| E
Data | Logic ::?
Ontology vocabulary | ©
on
a

Unicode

Figure 1.4: A layered approach to the Semantic Web

e Upward partial understanding. The design should be such that agents fully aware
of a layer should be able to take at least partial advantage of information at
higher levels. For example, an agent aware only of the RDF and RDF Schema
semantics might interpret knowledge written in OWL partly, by disregarding
those elements that go beyond RDF and RDF Schema. Of course, there is no
requirement for all tools to provide this functionality; the point is that this option

should be enabled.

While these ideas are theoretically appealing and have been used as guiding principles
for the development of the Semantic Web, their realization in practice has turned out to
be difficult, and some compromises have needed to be made. This will become clear in
chapter 4, where the layering of RDF and OWL is discussed.

Figure 1.4 shows the “layer cake” of the Semantic Web, which describes the main

layers of the Semantic Web design and vision. At the bottom we find XML, a language

18 The Semantic Web Vision

that lets one write structured web documents with a user-defined vocabulary. XML is
particularly suitable for sending documents across the web. In addition, URIs used in

XML can be grouped by their namespace, signified by NS in the diagram.

RDF is a basic data model, like the entity-relationship model, for writing simple
statements about web objects (resources). The RDF data model does not rely on XML,
but RDF has an XML-based syntax. Therefore, in figure 1.4, it is located on top of the

XML layer.

RDF Schema provides modeling primitives for organizing web objects into hier-
archies. Key primitives are classes and properties, subclass and subproperty relation-

ships, and domain and range restrictions. RDF Schema is based on RDF.

RDF Schema can be viewed as a primitive language for writing ontologies. But
there is a need for more powerful ontology languages that expand RDF Schema and
allow the representations of more complex relationships between web objects. The
Logic layer is used to enhance the ontology language further and to allow the writing

of application-specific declarative knowledge.

The Proof layer involves the actual deductive process as well as the representation

of proofs in web languages (from lower levels) and proof validation.

Finally, the Trust layer will emerge through the use of digital signatures and other
kinds of knowledge, based on recommendations by trusted agents or on rating and cer-
tification agencies and consumer bodies. Sometimes “Web of Trust” is used to indicate
that trust will be organized in the same distributed and chaotic way as the web itself.
Being located at the top of the pyramid, trust is a high-level and crucial concept: the
web will only achieve its full potential when users have trust in its operations (security)

and in the quality of information provided.

This classical layer cake was a major driver in the agenda of the Semantic Web,
but is now quite outdated. In particular, a number of alternatives for the ontology

vocabulary layer have emerged. In addition, rule languages have been defined on top

1.4 Book Overview 19

of RDF, bypassing the ontology vocabulary layer; this is particularly true in the recent
shift from rich semantic structures to the processing of huge amounts of (semantic)
data. Thus, this layer cake is included here for illustration purposes, as a means of

presenting a historic view of the Semantic Web.

1.4 Book Overview

In this book we concentrate on the Semantic Web technologies that have reached a
reasonable degree of maturity.

In chapter 2 we discuss RDF and RDF Schema. RDF is a language in which we can
express statements about objects (resources); it is a standard data model for machine-
processable semantics. RDF Schema offers a number of modeling primitives for orga-
nizing RDF vocabularies in typed hierarchies.

Chapter 3 is devoted to the query language SPARQL that plays the same role in the
RDF world as SQL in the relational world.

Chapter 4 discusses OWL2, the current revision of OWL, a web ontology language.
It offers more modeling primitives than RDF Schema, and it has a clean, formal seman-
tics.

Chapter 5 is devoted to rules in the framework of the Semantic Web. While rules
on the semantic web have not yet reached the same level of community agreement as
RDF, SPARQL, or OWL, the principles to be adopted are quite clear, so it makes sense
to present them here.

Chapter 6 discusses several application domains and explains the benefits that they
will draw from the materialization of the Semantic Web vision.

Chapter 7 describes various key issues regarding the development of ontology-
based systems for the web.

Finally, chapter 8 discusses briefly a few issues that are currently under debate in

the Semantic Web community.

20 The Semantic Web Vision

1.5 Summary

e The Semantic Web is an initiative that aims at improving the current state of the

World Wide Web.
e The key idea is the use of machine-processable web information.

e Key technologies include data publication with explicit metadata, ontologies,

logic, and inferencing.

e The development of the Semantic Web proceeds in layers.

Suggested Reading
An excellent introductory article on the Semantic Web vision is

e T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific Amer-

ican 284 (May 2001): 34-43.
An inspirational book about the history (and the future) of the web is

e T. Berners-Lee, with M. Fischetti. Weaving the Web. San Francisco: Harper,

1999.

A number of websites maintain up-to-date information about the Semantic Web and

related topics:

e www.semanticweb.org/.

e www.w3.0rg/2001/sw/.

There is a good selection of research papers providing technical information on issues

relating to the Semantic Web:

1.5 Summary 21

e J. Domingue, D. Fensel, and J. Hendler. Handbook of Semantic Web Technolo-

gies. Springer, 2011.

Key venues where the most important recent advances in the ideas, technologies, and

applications of the Semantic Web are published are:

e The conference series of the International Semantic Web Conference. See http:

//www.semanticweb.org/.

e The conference series of the Extended (European) Semantic Web Conference.

See http://www.eswc.org/.

e Journal of Web Semantics. http://www.journals.elsevier.com/

journal-of-web-semantics/.

A number of books dedicated to the Semantic Web have appeared in recent years.

Among them

e D. Allemang and J. Hendler. Semantic Web for the Working Ontologist: Effective

Modeling in RDFS and OWL. New York, NY.: Morgan Kaufmann, 2008.
focuses on ontological modeling issues, while

e P. Hitzler, M. Kroetzsch, and S. Rudolph. Foundations of Semantic Web Tech-

nologies. Boca Raton, FL.: Chapman and Hall, 2009.

focuses on the logical foundations.

Chapter 2

Describing Web Resources:

RDF

2.1 Introduction

The success of the WWW has shown the power of having standard mechanisms to
exchange and communicate information. HTML is the standard language in which
web pages are written. It allows anyone to publish a document and have confidence
that this document will be rendered correctly by any web browser.

There are three components that HTML and any exchange language has: a syntax,
a data model, and a semantics. A syntax tells us how to write data down. A data model
tells us the structure or organization of the data. A semantics tells us how to interpret

that data. We can illustrate each of these components with a snippet of HTML:

<html>
<head>
<title>Apartments for Rent< /title>

< /head>

23

24 Describing Web Resources: RDF

<body>

 Studio apartment on Florida Ave.
 3 bedroom Apartment on Baron Way

< /body>
< /html>

The syntax of HTML is text with tags (e.g. <title>) written using angle brackets.
The data model of HTML, known as the Document Object Model, defines the organi-
zation of these elements defined by tags into a hierarchical tree structure. For example,
<head> should come before <body> and elements should appear within
elements. Finally, the semantics of HTML tell us how the browser should interpret the
web page. For example, the browser should render the content of the web page’s body
within the browser window and elements should be displayed as an ordered list.
The syntax, data model, and semantics are all defined within the HTML standard.

HTML is designed to communicate information about the structure of documents
for human consumption. For the Semantic Web, we need something richer. We need a
data model that can be used by multiple applications, not just for describing documents
for people but for describing application-specific information. This data model needs to
be domain independent so that applications ranging from real estate to social networks
can leverage it. In addition to a flexible data model, we also need a mechanism to assign
semantics to the information represented using this data model. It should allow users
to describe how an application should interpret “friend” in a social network description
and “city” in a geographical description. Finally, like HTML, we need a way to write
down all this information — a syntax.

RDF (Resource Description Framework) provides just such a flexible domain inde-

pendent data model. Its basic building block is an entity-attribute-value triple, called a

2.2 RDF: Data Model 25

statement. Examples of statements we can represent using such a model include “The
Baron Way Apartment is an Apartment,” “The Baron Way Apartment is part of The
Baron Way Building,” and “The Baron Way Building is located in Amsterdam.” Be-
cause RDF is not particular to any domain or use, it is necessary for users to define
the terminology they use within these statements. To do this, they make use of RDF
Schema (RDFS). RDFS allows users to precisely define how their vocabulary (i.e. their
terminology) should be interpreted.

Combined, these technologies define the components of a standard language for

exchanging arbitrary data between machines:

e RDF — data model
e RDFS — semantics

e Turtle / RDFa/ RDF-XML — syntax

While RDF is primarily the data model within this language, it is often used as the

name for the whole of it (a sin we commit ourselves within this book).

Chapter Overview

e Section 2.2 describes RDF.
e The various syntaxes used for RDF are presented in section 2.3.

e The basics of RDF Schema are introduced in section 2.4 and the complete lan-

guage is presented in section 2.5 and section 2.6.

e The formal meaning of RDFS is given from two perspectives in sections 2.7 and

2.8.

2.2 RDF: Data Model

The fundamental concepts of RDF are resources, properties, statements, and graphs.

26 Describing Web Resources: RDF

2.2.1 Resources

We can think of a resource as an object, a “thing” we want to talk about. Resources
may be authors, apartments, tennis players, places, people, hotels, search queries, and
so on. Every resource has a URL. A URI can be a URL (Uniform Resource Locator, or
web address) or another kind of unique identifier. URI schemes have been defined not
only for web locations but also for telephone numbers, ISBN numbers, and geographic
locations. URIs provide a mechanism to unambiguously identify the “thing” we want
to talk about. Thus, if referring to a swimming pool, we can use a URI assigned to
swimming pools and not have it be confused with billiards (pool) or a group of people
(the pool of programmers). This is known as the homonym problem.

The use of a URI does not necessarily enable access to a resource. However, using
dereferencable URLs for resource identifiers is considered good practice. It enables
users to either retrieve a resource itself (in the case of an image) or a further descrip-
tion of that resource (in case of a person). This practice is assumed throughout the
book. The use of URIs is one of the key design decisions behind RDF. It allows for a
global, worldwide unique naming scheme. The use of such a scheme greatly reduces

the homonym problem that has plagued distributed data representation until now.

2.2.2 Properties

Properties are a special kind of resource; they describe relations between other re-
sources — for example, “friend of,” “written by,” and “located in.” Like all resources,
properties are identified by URIs. We can also dereference property URLs to find their

descriptions.

2.2.3 Statements

Statements assert the properties of resources. A statement is an entity-attribute-value

triple, consisting of a resource, a property, and a value. The value can either be a

2.2 RDF: Data Model 27

BaronWay location > Amsterdam
Building

Figure 2.1: An RDF statement represented graphically

resource or a literal. Literals are atomic values — for example, numbers, strings, or
dates. We often use the word subject to refer to the entity in a statement and object to
refer to its value.

Take an example statement “Baron Way Building is located in Amsterdam.” We

can write this as:

<http://www.semanticwebprimer.org/ontology /apartments.ttl#BaronWayBuilding>
<http://dbpedia.org/ontology/location>

<http://dbpedia.org/resource/ Amsterdam>.

Notice how we used URLs to identify the things we are referring to in our state-

ment.

2.2.4 Graphs

We can also write this same statement down graphically. Note that we leave off the
URISs in the picture for readability.

In figure 2.1, labeled nodes are connected by labeled arcs. The arcs are directed
from the subject of the statement to the object of the statement, with the label on the
arc to the statement’s property. The labels on the nodes are the identifiers of the subject
and object. The object of a statement can be the subject of another statement. For
example, we can say that “Amsterdam is a city.” We can see this graphically in figure

2.2.

28

Describing Web Resources: RDF

BaronWay location
Building

Amsterdam

Figure 2.2: An RDF graph

BaronWay
Building

location |
Ll

Qerdam

country

A
isPartOf Isa
Netherlands
\ 4
BaronWay .
Flat City

Figure 2.3: An expanded RDF graph

This graphical representation highlights the notion that RDF is a graph-centric data

model. Indeed, RDF resembles what is termed a semantic net in the Artificial Intel-

ligence community. We can continue to expand the graph with information about the

Baron Way Building. Figure 2.3 shows an expanded version of our RDF graph.

Importantly, this graph can be created in a distributed fashion by multiple different

participants just by using the same URLs. This allows us to create a Web of Data

2.2 RDF: Data Model 29

allowing for knowledge to be reused; for example, if we find RDF on the web
describing Amsterdam, we can reuse that information just by using that URL. Indeed,
there is a set of best practices, called the Linked Data principles,' that encourage us to

reuse and make available information to help create this global graph.

1. Use URIs as names for things.
2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, provide useful information, using the standards

(RDF).

4. Include links to other URIs so that they can discover more things.

While the RDF data model does not require that we follow these principles, by
doing so we can take advantage of the contributed knowledge of others. Notice how
we have reused this information from DBpedia.org in our examples. You can follow

these URLS to find out more information about the referred to concepts.

2.2.5 Pointing to Statements and Graphs

Sometimes it is useful to be able to point to particular statements and parts of graphs,
such as when assigning a degree of belief in a statement or identifying where a state-
ment has come from. For example, we may want to say that the statement about the
location of the Baron Way Building was created by a person, Frank. RDF provides two
mechanisms for doing so.

One is called reification. The key idea behind reification is to introduce an auxiliary

object, say, LocationStatement, and relate it to each of the three parts of the original

Thttp://www.w3.org/DesignIssues/LinkedData.html.

30 Describing Web Resources: RDF

creator
Location
Statement

predicate

BaronWay
Building

Amsterdam

location

Figure 2.4: An example of reification

statement through the properties subject, predicate, and object. In the preceding exam-
ple the subject of LocationStatement would be BaronWayBuilding, the predicate would
be location, and the object Amsterdam. We can then refer to the statement in the subject
of another triple that defines the creator. Figure 2.4 depicts the resulting graph. Again,

the full URIs are not shown for presentation purposes.

This rather cumbersome approach is necessary because there are only triples in
RDF; therefore we cannot add an identifier directly to a triple (then it would be a
quadruple). Because of the overhead of reification, in newer versions of the RDF stan-
dard, the notion of named graphs was introduced. Here, an explicit identifier (again a
URL) is given to a statement or set of statements. This identifier can then be referred to
in normal triples. This is a more straightforward mechanism for identifying statements
as well as graphs. Simply put, a named graph allows one to circle a set of RDF state-
ments and provide these statement an identifier. Section 2.3.1.3 provides an example

of the above reified statement using named graphs.

2.3 RDF Syntaxes 31

2.2.6 Dealing with Richer Predicates

We can think of a triple (z, P, y) as a logical formula P(x,y), where the binary pred-
icate P relates the object x to the object y. In fact, RDF offers only binary predicates
(properties). However, in some cases we may need predicates that have more than two
arguments. Luckily, such predicates can be simulated by a number of binary predicates.
We illustrate this technique for a predicate broker with three arguments. The intuitive

meaning of broker(X, Y, Z) is
X is the broker in a home sale between seller Y and purchaser Z.

We now introduce a new auxiliary resource home-sale and the binary predicates broker,

seller, and purchaser. Then we can represent broker(X, Y, Z) as follows:

broker(home-sale, X)
seller(home-sale, Y)

purchaser(home-sale, Z)

While the predicate with three arguments is more succinct to write, the use of binary

predicates does simplify the overall data model.

2.3 RDF Syntaxes

We have already seen one syntax for RDF, namely, a graphical syntax. This syntax is,
however, neither machine interpretable nor standardized. Here, we introduce a standard

machine interpretable syntax called Turtle, and briefly discuss some alternatives.

2.3.1 Turtle

Terse RDF Triple Language (Turtle) is a text-based syntax for RDF. The file extension
used for Turtle text files is “.ttl”. We have already seen how to write a statement in

Turtle earlier. Here’s an example:

32 Describing Web Resources: RDF

<http://www.semanticwebprimer.org/ontology/apartments.ttl#BaronWayBuilding>
<http://dbpedia.org/ontology/location>

<http://dbpedia.org/resource/Amsterdam>.

URLSs are enclosed in angle brackets. The subject, property, and object of a state-
ment appear in order, followed by a period. Indeed, we can write a whole RDF graph

just using this approach.

<http://www.semanticwebprimer.org/ontology/apartments.ttl#>
<http://www.semanticwebprimer.org/ontology/apartments.ttl#isPartOf>
<http://www.semanticwebprimer.org/ontology/apartments.ttl#BaronWayBuilding>.

<http://www.semanticwebprimer.org/ontology/apartments.ttl#BaronWayBuilding>
<http://dbpedia.org/ontology/location>

<http://dbpedia.org/resource/Amsterdam>.

2.3.1.1 Literals

So far we have defined statements that link together resources. As discussed previously,
we can also include literals, that is, atomic values within RDEF. In Turtle, we write this
down by simply enclosing the value in quotes and appending it with the data type of
the value. A data type tells us whether we should interpret a value as string, a date,
integer or some other type. Data types are again expressed as URLs. It is recommend
practice to use the data types defined by XML Schema. When using these data types
the values must conform to the XML Schema definition. If no data type is specified
after a literal, it is assumed to be a string. Here are some common data types and how

they look in Turtle:

string - “‘Baron Way"'

integers - 1"~ ~<http://www.w3.0rg/2001/XMLSchemainteger>
decimals - '1.23"" <http://www.w3.0rg/2001/XMLSchema#tdecimal>
dates - "'1982-08-30"" " "~ <http:/ /www.w3.0rg /2001 /XMLSchema#date>

2.3 RDF Syntaxes 33

time - '11:24:00" ~ ~ <http://www.w3.0rg/2001 /XMLSchema#time>
date with a time -

"'1982-08-30T11:24:00"" " ~ <http:/ /www.w3.0rg/2001 /XMLSchema#dateTime>

Suppose that we want to add to our graph that the Baron Way Apartment has three

bedrooms. We would add the following statement in Turtle to our graph.

<http://www.semanticwebprimer.org/ontology/apartments.ttl#BaronWayApartment>
<http://www.semanticwebprimer.org/ontology/apartments.ttl#hasNumberOfBedrooms>

"3"~ " <http:/ /www.w3.org/2001/XMLSchema#integer>.

<http://www.semanticwebprimer.org/ontology/apartments.ttl#BaronWayApartment>
<http://www.semanticwebprimer.org/ontology/apartments.ttl#isPartOf>

<http://www.semanticwebprimer.org/ontology/apartments.ttl#BaronWayBuilding>.

<http://www.semanticwebprimer.org/ontology/apartments.ttl#BaronWayBuilding>
<http://dbpedia.org/ontology/location>

<http://dbpedia.org/resource/Amsterdam>.

The examples above are rather unwieldy. To make things clearer, Turtle provides a

number of constructs to make it easier to write things down.

2.3.1.2 Abbreviations

Often when we define vocabularies, we do so at the same URI. In our example, the
resources Baron Way Apartment and Baron Way Building are both defined at the
URL http://www.semanticwebprimer.org/ontology/apartments.ttl. This URL de-
fines what is termed the namespace of those resources. Turtle takes advantage of this
convention to allow URLSs to be abbreviated. It introduces the @prefix syntax to define
short stand-ins for particular namespaces. For example, we can say that swp should be
the stand-in for http://www.semanticwebprimer.org/ontology/apartments.ttl. Such

a stand-in is termed a qualified name. Below is a rewrite of our example using prefixes.

34 Describing Web Resources: RDF

@prefix swp: <http://www.semanticwebprimer.org/ontology/apartments.ttl#>.
Qprefix dbpedia: <http://dbpedia.org/resource/>.

Qprefix dbpedia-owl: <http://dbpedia.org/ontology/>.

Oprefix xsd: <http://www.w3.0rg/2001/XMLSchema#>.

swp:BaronWayApartment swp:hasNumberOfBedrooms "3" "~ <xsd:integer>.
swp:BaronWayApartment swp:isPartOf swp:BaronWayBuilding.

swp:BaronWayBuilding dbpedia-owl:location dbpedia:Amsterdam.

Note that the angle brackets are dropped from around resources that are referred
to using a qualified name. Secondly, we can mix and match regular URLs with these
qualified names.

Turtle also allows us to not repeat particular subjects when they are used repeatedly.
In the example above, swp:BaronWayApartment is used as the subject of two triples.
This can be written more compactly by using a semicolon at the end of a statement.

For example:

@prefix swp: <http://www.semanticwebprimer.org/ontology/apartments.ttl#>.
Qprefix dbpedia: <http://dbpedia.org/resource/>.

Qprefix dbpedia-owl: <http://dbpedia.org/ontology/>.

Oprefix xsd: <http://www.w3.0rg/2001/XMLSchema#>.

swp:BaronWayApartment swp:hasNumberOfBedrooms "3"* ~ <xsd:integer>;
swp:isPartOf swp:BaronWayBuilding.

swp:BaronWayBuilding dbpedia-owl:location dbpedia:Amsterdam.

If both a subject and predicate are used repeatedly, we can use a comma at the end
of a statement. For instance, if we want to extend our example to say that Baron Way
Building is not only located in Amsterdam but also in the Netherlands, we can write

the following Turtle:

2.3 RDF Syntaxes 35

Qprefix swp: <http://www.semanticwebprimer.org/ontology/apartments.ttl#>.
Qprefix dbpedia: <http://dbpedia.org/resource/>.

Qprefix dbpedia-owl: <http://dbpedia.org/ontology/>.

Qprefix xsd: <http://www.w3.0rg/2001/XMLSchema#>.

swp:BaronWayApartment swp:hasNumberOfBedrooms "3" "~ ~ <xsd:integer>;

swp:isPartOf swp:BaronWayBuilding.

swp:BaronWayBuilding dbpedia-owl:location dbpedia:Amsterdam,
dbpedia:Netherlands.

Finally, Turtle also allows us to abbreviate common data types. For example, num-
bers can be written without quotes. If they contain a decimal (e.g. 14.3), they are
interpreted as decimals. If they do not contain a decimal (e.g. 1), they are interpreted

as integers. This shortens our example some more:

Qprefix swp: <http://www.semanticwebprimer.org/ontology/apartments.ttl#>.
Qprefix dbpedia: <http://dbpedia.org/resource/>.

Q@prefix dbpedia-owl: <http://dbpedia.org/ontology/>.

swp:BaronWayApartment swp:hasNumberOfBedrooms 3;
swp:isPartOf swp:BaronWayBuilding.
swp:BaronWayBuilding dbpedia-owl:location dbpedia:Amsterdam,
dbpedia:Netherlands.

2.3.1.3 Named Graphs

We discussed previously the ability to point to a set of statements together. Trig is an
extension to Turtle that allows us to express such a notion. For example, we might want

to say that our statements about the Baron Way Apartment were created by a person,

36 Describing Web Resources: RDF

Frank, identified by the URL http://www.cs.vu.nl/~frankh. We do this by putting
brackets around the set of statements we want and assigning that set of statements a

URL. Let’s look at an example:

Qprefix swp: <http://www.semanticwebprimer.org/ontology/apartments.ttl#>.
Qprefix dbpedia: <http://dbpedia.org/resource/>.
Qprefix dbpedia-owl: <http://dbpedia.org/ontology/>.

Qprefix dc: <http://purl.org/dc/terms/>.

<http://www.semanticwebprimer.org/ontology/apartments.ttl# >

dc:creator <http://www.cs.vu.nl/ frankh>

<http://www.semanticwebprimer.org/ontology/apartments.ttl#>

{
swp:BaronWayApartment swp:hasNumberOfBedrooms 3;
swp:isPartOf swp:BaronWayBuilding.
swp:BaronWayBuilding dbpedia-owl:location dbpedia:Amsterdam,
dbpedia:Netherlands.
¥

In this approach, statements that are not part of a particular graph go in a set of

brackets without a URL in front. This is called the default graph.

2.3.2 Other Syntaxes

Besides Turtle, there are a number of other syntaxes that we can use to write down

RDF. Among them are two other standard syntaxes: RDF/XML and RDFa.

2.3 RDF Syntaxes 37

2.3.2.1 RDF/XML

RDF/XML is an encoding of RDF in the XML language. This allows RDF to be used
with existing XML processing tools. Originally, RDF/XML was the only standard
syntax for RDF. However, Turtle was adopted as an additional standard as it is often
easier to read. Below is RDF/XML. Subjects are denoted by the rdf:about within an
rdf:Description element (enclosed in brackets). Predicates and objects related to that
subject are enclosed in the rdf:Description element. Namespaces can be used through
the XML namespaces (xmlns:) construct. All RDF/XML should be enclosed in an
element rdf:RDF.

<?xml version="1.0" encoding="utf-8"7>
<rdf:RDF xmins:dbpedia-owl="http://dbpedia.org/ontology/"
xmlins:dbpedia="http://dbpedia.org/resource/"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:swp="http://www.semanticwebprimer.org/ontology/apartments.ttl#" >
<rdf:Description
rdf:about="http://www.semanticwebprimer.org/ontology/apartments.ttl#BaronWayApartment" >
<swp:hasNumberOfBedrooms
rdf:datatype="http://www.w3.0rg/2001/XMLSchema#tinteger" >
3
< /swp:hasNumberOfBedrooms>
< /rdf:Description>
<rdf:Description
rdf:about="http://www.semanticwebprimer.org/ontology/apartments.ttl#BaronWayApartment" >
<swp:isPartOf
rdf:resource="http://www.semanticwebprimer.org/ontology/apartments.ttl#BaronWayBuilding" />
< /rdf:Description>
<rdf:Description
rdf:about="http://www.semanticwebprimer.org/ontology/apartments.ttl#BaronWayBuilding" >

<dbpedia-owl:location

38 Describing Web Resources: RDF

rdf:resource="http://dbpedia.org/resource/Amsterdam" />

< /rdf:Description>

<rdf:Description
rdf:about="http://www.semanticwebprimer.org/ontology/apartments.ttl#BaronWayBuilding" >
<dbpedia-owl:location

rdf:resource="http://dbpedia.org/resource/Netherlands" />
< /rdf:Description>
< /rdf:RDF>

2.3.2.2 RDFa

One use case of RDF is to describe or mark up the content of HTML web pages.
In order to make it easier, a syntax RDFa was introduced to help with that use case.
RDFa embeds RDF within the attributes of HTML tags. We’ll use an example of

advertisement for the Baron Way Apartment.

<html>

<body>

<H1> Baron Way Apartment for Sale</H1>

The Baron Way Apartment has three bedrooms and is located in the fam-
ily friendly Baron Way Building. The Apartment is located in the north of Amsterdam.

< /body>

</html>

This page does not contain any machine readable description. We can mark up the

page using RDFa as follows:

<html xmlins:dbpedia="http://dbpedia.org/resource/"
xmlns:dbpediaowl="http://dbpedia.org/ontology/"
xmlIns:swp="http://www.semanticwebprimer.org/ontology/apartments.ttl#"
xmlIns:geo="http://www.geonames.org/ontology#" >

<body>

2.3 RDF Syntaxes 39

<H1> Baron Way Flat for Sale</H1>

<div about="[swp:BaronWayFlat]" >
The Baron Way Flat has 3< /span> bed-
rooms and is located in the family friendly <span rel="swp:isPartOf" re-

source="[swp:BaronWayBuilding]" >Baron Way Building

<div about="[swp:BaronWayBuilding]" >

The building is located in the north of Amsterdam.

< /span>

< [div>

</div>
< /body>

</html>

This markup will produce the same RDF expressed above in Turtle. Since the RDF
is encoded in tags such as spans, paragraphs, and links, the RDF will not be rendered
by browsers when displaying the HTML page. Similar to RDF/XML, namespaces are
encoded using the xmlns declaration. In some cases, we must use brackets to inform
the parser that we are using prefixes. Subjects are identified by the about attribute.
Properties are identified by either a rel or property attribute. Rel attributes are used
when the object of the statement is a resource whereas a property attribute is used when
the object of a statement is a literal. Properties are associated with subjects through the
use of the hierarchal structure of HTML.

Each syntax for RDF presented above is useful for different situations. However, it
is important to realize that even though different syntaxes may be used, they all share

the same underlying data model and semantics. Thus far we have discussed how to

40 Describing Web Resources: RDF

write down statements about things identified by URLs. But what do those statements
mean? How should a computer go about interpreting the statements made? These
questions are discussed in the next section where we introduce a schema language for

RDFE.

2.4 RDFS: Adding Semantics

RDF is a universal language that lets users describe resources using their own vocab-
ularies. RDF does not make assumptions about any particular application domain, nor
does it define the semantics of any domain. In order to specify these semantics, a de-
veloper or user of RDF needs to define what those vocabularies mean in terms of a set

of basic domain independent structures defined by RDF Schema.

2.4.1 Classes and Properties

How do we describe a particular domain? Let us consider our domain of apartment
rentals. First we have to specify the “things” we want to talk about. Here we make
a first, fundamental distinction. On one hand, we want to talk about particular apart-
ments, such as the Baron Way Apartment, and particular locations, such as Amsterdam;
we have already done so in RDF.

But we also want to talk about apartments, buildings, countries, cities, and so on.
What is the difference? In the first case we talk about individual objects (resources),
and in the second we talk about classes that define types of objects.

A class can be thought of as a set of elements. Individual objects that belong to a
class are referred to as instances of that class. RDF provides us a way to define the
relationship between instances and classes using a special property rdf:type.

An important use of classes is to impose restrictions on what can be stated in an
RDF document using the schema. In programming languages, fyping is used to prevent

nonsense from being written (such as A + 1, where A is an array; we lay down that the

2.4 RDFS: Adding Semantics 41

arguments of + must be numbers). The same is needed in RDF. After all, we would

like to disallow statements such as:

Baron Way Apartment rents Jeff Meyer

Amsterdam has number of bedrooms 3

The first statement is nonsensical because buildings do not rent people. This imposes a
restriction on the values of the property “rents.” In mathematical terms, we restrict the
range of the property.

The second statement is nonsensical because cities do not have bedrooms. This im-
poses a restriction on the objects to which the property can be applied. In mathematical

terms, we restrict the domain of the property.

2.4.2 Class Hierarchies and Inheritance

Once we have classes, we would also like to establish relationships between them. For
example, suppose that we have classes for

unit

residential unit commercial unit

house & apartment office

These classes are not unrelated to each other. For example, every residential unit is a
unit. We say that “residential unit” is a subclass of “unit,” or equivalently, that “unit”
is a superclass of “residential unit.” The subclass relationship defines a hierarchy of
classes, as shown in figure 2.5. In general, A is a subclass of B if every instance of
A is also an instance of B. There is no requirement in RDF Schema that the classes
together form a strict hierarchy. In other words, a subclass graph as in figure 2.5 need
not be a tree. A class may have multiple superclasses. If a class A is a subclass of both
Bj and Bo, this simply means that every instance of A is both an instance of B; and

an instance of Bs.

42 Describing Web Resources: RDF

Residential
Unit

Apartment

Figure 2.5: A hierarchy of classes

Commercial
Unit

2.4 RDFS: Adding Semantics 43

A hierarchical organization of classes has a very important practical significance,

which we outline now. Consider the range restriction

People can only rent residential units.

Suppose Baron Way Apartment is defined as an apartment. Then, according to
the preceding restriction, it does not qualify as a Residential Unit because there is
no statement specifying that the Baron Way Apartment is also a residential unit. It
would be counterintuitive to overcome this difficulty by adding that statement to our
description. Instead we would like the Baron Way Apartment to inherit the ability to
be rented from the class of residential units. Exactly this is done in RDF Schema.

By doing so, RDF Schema fixes the semantics of “is a subclass of.” Now it is not
up to an application to interpret “is a subclass of;” instead its intended meaning must
be used by all RDF processing software. By making such semantic definitions, RDFS
is a (still limited) language for defining the semantics of particular domains. Stated
another way, RDF Schema is a primitive ontology language.

Classes, inheritance, and properties are, of course, known in other fields of comput-
ing — for example, in object-oriented programming. But while there are many similari-
ties, there are differences, too. In object-oriented programming, an object class defines
the properties that apply to it. To add new properties to a class means to modify the
class.

However, in RDFS, properties are defined globally. That is, they are not encapsu-
lated as attributes in class definitions. It is possible to define new properties that apply
to an existing class without changing that class.

On one hand, this is a powerful mechanism with far-reaching consequences: we
may use classes defined by others and adapt them to our requirements through new
properties. On the other hand, this handling of properties deviates from the standard
approach that has emerged in the area of modeling and object-oriented programming.

It is another idiosyncratic feature of RDF/RDEFS.

44 Describing Web Resources: RDF

2.4.3 Property Hierarchies

We saw that hierarchical relationships between classes can be defined. The same can
be done for properties. For example, “rents” is a subproperty of “resides at.” If a person
p rents a residential unit r, then p also resides at . The converse is not necessarily true.
For example, p may be a child living with a family and not paying rent or a person may
be just visiting.

In general, if some property P is a subproperty of @ if Q(z,y) whenever P(x,y).

2.4.4 RDF versus RDFS Layers

As a final point, we illustrate the different layers involved in RDF and RDFS using a

simple example. Consider the RDF statement
Jeff Meyer rents the Baron Way Apartment.

The schema for this statement may contain classes such as person, apartments, houses,
units, and properties such as rents, resides at, or address. Figure 2.6 illustrates the layers
of RDF and RDF Schema for this example. In this figure, blocks are properties, bubbles
above the dashed line are classes, and bubbles below the dashed line are instances.
The schema in figure 2.6 is itself written in a formal language, RDF Schema, that
can express its ingredients: subClassOf, Class, Property, subPropertyOf, Resource,

and so on. Next we describe the language of RDF Schema in more detail.

2.5 RDF Schema: The Language

RDF Schema provides modeling primitives for expressing the information described in
section 2.5. One decision that must be made is what formal language to use. It should
not be surprising that RDF itself will be used: the modeling primitives of RDF Schema

are defined using resources and properties. This choice can be justified by looking

2.5 RDF Schema: The Language

45

(literal)

range

address
domain

residesAt

subPropertyOf

domain

subClassOf

Residential
Unit

subClassOf

! E subClassOf

| i

! :

: ! Apartment

| i

]]
RDFS : i

: z :

1 I 1

1 1 1
RDF ! ! !

1 : 1

1

re

Baron Way

nts Apartment

Figure 2.6: RDF and RDFS layers

46 Describing Web Resources: RDF

at figure 2.6. We presented this figure as displaying a class/property hierarchy plus
instances, but it is, of course, itself simply a labeled graph that can be encoded in RDF.
Remember that RDF allows one to express any statement about any resource, and that
anything with a URI can be a resource. So, if we wish to say that the class “apartment”

is a subclass of “residential unit,” we may.
1. Define the required resources for apartment, residential unit, and subClassOf;
2. define subClassOf to be a property;
3. write the triple (apartment subClassOf residential unit).

All these steps are within the capabilities of RDF. So, an RDFS document is just an
RDF document, and we use one of the standard syntaxes for RDF.

Now we define the modeling primitives of RDF Schema.

2.5.1 Core Classes

The core classes are

rdfs:Resource, the class of all resources
rdfs:Class, the class of all classes
rdfs:Literal, the class of all literals (strings)
rdf:Property, the class of all properties

rdf:Statement, the class of all reified statements

2.5.2 Core Properties for Defining Relationships
The core properties for defining relationships are

rdf:type, which relates a resource to its class (see section 2.4.1). The resource is de-

clared to be an instance of that class.

2.5 RDF Schema: The Language 47

rdfs:subClassOf, which relates a class to one of its superclasses. All instances of a
class are instances of its superclass. Note that a class may be a subclass of more
than one class. As an example, the class femaleProfessor may be a subclass of

both female and professor.
rdfs:subPropertyOf, which relates a property to one of its superproperties.
Here is an example stating that all apartments are residential units:

swp:apartment refs:subClassOf swp:ResidentialUnit

Note that rdfs:subClassOf and rdfs:subPropertyOf are transitive, by definition. Also, it
is interesting that rdfs:Class is a subclass of rdfs:Resource (every class is a resource),
and rdfs:Resource is an instance of rdfs:Class (rdfs:Resource is the class of all re-

sources, so it is a class!). For the same reason, every class is an instance of rdfs:Class.

2.5.3 Core Properties for Restricting Properties

The core properties for restricting properties are

rdfs:domain, which specifies the domain of a property P and states that any resource

that has a given property is an instance of the domain classes.

rdfs:range, which specifies the range of a property P and states that the values of a

property are instances of the range classes.

Here is an example stating that whenever any resource has an address, it is (by infer-

ence) a unit and that its value is a literal:

swp:address rdfs:domain swp:Unit.

swp:address refs:range rdf:Literal.

48 Describing Web Resources: RDF

2.5.4 Useful Properties for Reification

The following are some useful properties for reification:
rdf:subject, which relates a reified statement to its subject
rdf:predicate, which relates a reified statement to its predicate

rdf:object, which relates a reified statement to its object

2.5.5 Container Classes

RDF also allows for containers to be represented in a standard way. One can represent

bags, sequences, or alternatives (i.e., choice).
rdf:Bag, the class of bags,

rdf:Seq, the class of sequences,

rdf:Alt, the class of alternatives,

rdfs:Container, a superclass of all container classes, including the three preceding

ones.

2.5.6 Utility Properties

A resource may be defined and described in many places on the web. The following

properties allow us to define links to those addresses:

rdfs:seeAlso relates a resource to another resource that explains it.

rdfs:isDefinedBy is a subproperty of rdfs:seeAlso and relates a resource to the place

where its definition, typically an RDF schema, is found.

Often it is useful to provide more information intended for human readers. This can be

done with the following properties:

2.5 RDF Schema: The Language 49

rdfs:comment. Comments, typically longer text, can be associated with a resource.

rdfs:label. A human-friendly label (name) is associated with a resource. Among other
purposes, it may serve as the name of a node in a graphic representation of the

RDF document.

2.5.7 Example: Housing

We refer to the housing example, and provide a conceptual model of the domain, that

is, an ontology.

Qprefix swp: <http://www.semanticwebprimer.org/ontology/apartments.ttl#>.
Q@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>.
Q@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

swp:Person rdf:type rdfs:Class.

swp:Person rdfs:comment "The class of people".

swp:Unit rdf:type rdfs:Class.
swp:Unit rdfs:comment "A self-contained section of accommodations

in a larger building or group of buildings.".

swp:ResidentialUnit rdf:type rdfs:Class.
swp:ResidentialUnit rdfs:subClassOf swp:Unit.
swp:ResidentialUnit

rdfs:comment "The class of all units or places where people live.".

swp:Apartment rdf:type rdfs:Class.
swp:Apartment rdfs:subClassOf swp:ResidentialUnit.

swp:Apartment rdfs:comments "The class of apartments".

50 Describing Web Resources: RDF

swp:House rdf:type rdfs:Class.
swp:House rdfs:subClassOf swp:ResidentialUnit.

swp:House rdfs:comment "The class of houses".

swp:residesAt rdf:type rdfs:Property.
swp:residesAt rdfs:comment "Relates persons to their residence".
swp:residesAt rdfs:domain swp:Person.

swp:residesAt rdfs:range swp:ResidentialUnit.

swp:rents rdf:type rdfs:Property.
swp:rents rdfs:comment "It inherits its domain (swp:Person)
and range (swp:ResidentialUnit) from its superproperty (swp:residesAt)".

swp:rents rdfs:subPropertyOf swp:residesAt.

swp:address rdf:type rdfs:Property.
swp:address rdfs:comment "Is a property of units and takes literals as its value".
swp:address rdfs:domain swp:Unit.

swp:address rdfs:range rdf:Literal.

2.5.8 Example: Motor Vehicles

Here we present a simple ontology of motor vehicles. The class relationships are shown

in figure 2.7.

Oprefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
Qprefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#£> .

<#miniVan> a rdfs:Class ;

rdfs:subClassOf <#passengerVehicle>, <#van> .

2.6 RDF and RDF Schema in RDF Schema 51

motorVehicle

passengerVehicle

Figure 2.7: Class hierarchy for the motor vehicles example

<#motorVehicle> a rdfs:Class .

<#passengerVehicle> a rdfs:Class ;
rdfs:subClassOf <#tmotorVehicle> .

<#truck> a rdfs:Class ;

rdfs:subClassOf <#motorVehicle> .

<Ftvan> a rdfs:Class ;

rdfs:subClassOf <#motorVehicle> .

2.6 RDF and RDF Schema in RDF Schema

Now that we know the main components of the RDF and RDFS languages, it may be

instructive to look at the definitions of RDF and RDFS. These definitions are expressed

52 Describing Web Resources: RDF

in the language of RDF Schema. One task is to see how easily they can be read now
that the meaning of each component has been clarified.

The following definitions are just part of the full language specification. The re-
maining parts are found in the namespaces specified in rdf:RDF. We provide them in

their original XML syntax.

2.6.1 RDF

<?xml version="1.0" encoding="UTF-16"7>

<rdf:RDF
xmlins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#">

<rdfs:Class rdf:ID="Statement"
rdfs:comment="The class of triples consisting of a
predicate, a subject and an object

(that is, a reified statement)"/>

<rdfs:Class rdf:ID="Property"

rdfs:comment="The class of properties" />

<rdfs:Class rdf:ID="Bag"

rdfs:comment="The class of unordered collections" />

<rdfs:Class rdf:ID="Seq"

rdfs:comment="The class of ordered collections" />

<rdfs:Class rdf:ID="Alt"

rdfs:comment="The class of collections of alternatives" />

2.6 RDF and RDF Schema in RDF Schema

53

<rdf:Property rdf:ID="predicate"
rdfs:comment="Identifies the property used in a statement
when representing the statement
in reified form™>
<rdfs:domain rdf:resource="+#Statement" />
<rdfs:range rdf:resource="#Property" />

< /rdf:Property>

<rdf:Property rdf:ID="subject"

rdfs:comment="Identifies the resource that a statement is
describing when representing the statement
in reified form™>

<rdfs:domain rdf:resource="4tStatement" />

< /rdf:Property>

<rdf:Property rdf:ID="object"
rdfs:comment="Identifies the object of a statement
when representing the statement

in reified form" />

<rdf:Property rdf:ID="type"
rdfs:comment="Identifies the class of a resource.
The resource is an instance

of that class." />

</rdf:RDF>

2.6.2 RDF Schema

<rdf:RDF
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"

54 Describing Web Resources: RDF

xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#">

<rdfs:Class rdf:ID="Resource"

rdfs:comment="The most general class"/>

<rdfs:Class rdf:ID="comment"
rdfs:comment="Use this for descriptions™>
<rdfs:domain rdf:resource="#Resource" />
<rdfs:range rdf:resource="#Literal" />

< /rdfs:Class>

<rdfs:Class rdf:ID="Class"
rdfs:comment="The concept of classes.

All classes are resources.”>
<rdfs:subClassOf rdf:resource="#Resource" />

< /rdfs:Class>

<rdf:Property rdf:ID="subClassOf">
<rdfs:domain rdf:resource="#Class" />
<rdfs:range rdf:resource="#Class" />

< /rdf:Property>

<rdf:Property rdf:ID="subPropertyOf” >
<rdfs:domain rdf:resource="&rdf;Property" />
<rdfs:range rdf:resource="&rdf;Property" />

< /rdf:Property>

</rdf:RDF>

The namespaces do not provide the full definition of RDF and RDF Schema. Consider,

2.7 An Axiomatic Semantics for RDF and RDF Schema 55

for example, rdfs:subClassOf. The namespace specifies only that it applies to classes
and has a class as a value. The meaning of being a subclass, namely, that all instances
of one class are also instances of its superclass, is not expressed anywhere. In fact,
it cannot be expressed in an RDF document. If it could, there would be no need for
defining RDF Schema.

We provide a formal semantics in the next section. Of course, RDF parsers and
other software tools for RDF (including query processors) must be aware of the full

semantics.

2.7 An Axiomatic Semantics for RDF and RDF Schema

In this section we formalize the meaning of the modeling primitives of RDF and RDF
Schema. Thus we capture the semantics of RDF and RDFS.

The formal language we use is predicate logic, universally accepted as the founda-
tion of all (symbolic) knowledge representation. Formulas used in this formalization
are referred to as axioms.

By describing the semantics of RDF and RDFS in a formal language like logic we
make the semantics unambiguous and machine-accessible. Also, we provide a basis

for reasoning support by automated reasoners manipulating logical formulas.

2.7.1 The Approach

All language primitives in RDF and RDF Schema are represented by constants:
Resource, Class, Property, subClassO f, and so on. A few predefined predicates
are used as a foundation for expressing relationships between the constants.

An auxiliary theory of lists is used. It has function symbols
nil (empty list),

cons(x,l) (adds an element to the front of the list),

56 Describing Web Resources: RDF

first(l) (returns the first element),

rest(l) (returns the rest of the list),
and predicate symbols

item(z, () (true iff an element occurs in the list),
list(l) (true iff [is a list).

Lists are used to represent containers in RDF. They are also needed to capture the
meaning of certain constructs (such as cardinality constraints) in richer ontology lan-
guages.

Most axioms provide typing information. For example,
Type(subClassO f, Property)

says that subClassO f is a property. We use predicate logic with equality. Variable
names begin with 7. All axioms are implicitly universally quantified.

Here we show the definition of most elements of RDF and RDF Schema. The
axiomatic semantics of the full languages is found in an online document; see Fikes

and McGuinness (2001) in suggested reading.

2.7.2 Basic Predicates

The basic predicates are

PropVal(P,R,V), a predicate with three arguments, which is used to represent an

RDF statement with resource R, property P, and value V/

Type(R,T), short for PropVal(type, R, T'), which specifies that the resource R has

the type T’

Type(?r,7t) «— PropVal(type, r, 7t)

2.7 An Axiomatic Semantics for RDF and RDF Schema 57

2.7.3 RDF

An RDF statement (triple) (R, P, V') is represented as PropVal(P, R, V).

Classes

In our language we have constants Class, Resource, Property, and Literal. All

classes are instances of Class; that is, they have the type Class:

Type(Class, Class)
Type(Resource, Class)
Type(Property, Class)

Type(Literal, Class)

Resource is the most general class: every object is a resource. Therefore, every class

and every property is a resource:

Type(?p, Property) — Type(?p, Resource)

Type(?c, Class) — Type(?c, Resource)
Finally, the predicate in an RDF statement must be a property:

PropVal(?p,?r,7v) — Type(?p, Property)

The type Property
type is a property:
Type(type, Property)

Note that it is equivalent to PropVal(type, type, Property): the type of type is

Property. type can be applied to resources and has a class as its value:

Type(?r,?7c) — (Type(?r, Resource) A Type(?e, Class))

58 Describing Web Resources: RDF

The Auxiliary FuncProp Property

A functional property is a property that is a function: it relates a resource to at most
one value. Functional properties are not a concept of RDF but are used in the axioma-
tization of other primitives.

The constant F'uncProp represents the class of all functional properties. P is a
functional property if, and only if, it is a property, and there are no x, ¥, and ys such
that P(x,y1), P(x,y2), and y1 # yo.

Type(?p, FuncProp) <—
(T'ype(?p, Property) ANV?rvvlV?7v2

(PropVal(?p, ?r, 7v1) A PropVal(?p, 7r, 70v2) — vl =702))

Reified Statements

The constant Statement represents the class of all reified statements. All reified state-
ments are resources, and Statement is an instance of C'lass:
Type(?s, Statement) — Type(?s, Resource)

Type(Statement, Class)
A reified statement can be decomposed into the three parts of an RDF triple:

Type(?st, Statement) —
I?7p3?r3?v(PropVal(Predicate, 7st, Tp)A

PropVal(Subject, ?st, ?r) A PropVal(Object, ?st, ?v))
Subject, Predicate, and Object are functional properties. That is, every statement
has exactly one subject, one predicate, and one object:

Type(Subject, FuncProp)

Type(Predicate, FuncProp)

Type(Object, FuncProp)

2.7 An Axiomatic Semantics for RDF and RDF Schema 59

Their typing information is

PropVal(Subject, ?st, ?r) —

(Type(?st, Statement) A\ Type(?r, Resource))

PropVal(Predicate, ?st, 7p) —

(Type(?st, Statement) A Type(?p, Property))

PropVal(Object, ?st, 7v) —

(Type(?st, Statement) N (Type(?v, Resource) V Type(?v, Literal)))

The last axiom says, if Object appears as the property in an RDF statement, then it

must apply to a reified statement and have as its value either a resource or a literal.
Containers
All containers are resources:
Type(?c, Container) — Type(?c, Resource)
Containers are lists:
Type(?c, Container) — list(?c)
Containers are bags or sequences or alternatives:

Type(?c, Container) <—

(T'ype(?c, Bag) V Type(?e, Seq) V Type(?e, Alt))
Bags and sequences are disjoint:
~(Type(?z, Bag) A Type(?z, Seq))

For every natural number n > 0, there is the selector _n, which selects the nth element

of a container. It is a functional property

60 Describing Web Resources: RDF

Type(_n, FuncProp)

and applies to containers only:

PropVal(_n,?c,?0) — Type(?c, Container)

2.7.4 RDF Schema
Subclasses and Subproperties

subClassOf is a property:
Type(subClassO f, Property)
If a class C' is a subclass of a class C”, then all instances of C are also instances of C":

PropVal(subClassOf,?c,?c") +—
(Type(?e, Class) A Type(?c', Class)A

V?x(Type(?x, 7c) — Type(?x, ?c)))
Similarly for subPropertyOf: P is a subproperty of P’ if P’(x,y) whenever P(z,y):

Type(subPropertyO f, Property)

PropVal(subPropertyOf,7p, 7p’) +—
(Type(?p, Property) A Type(?p’, Property)A

Vv ?u(PropVal(?p, ?r, 7v) — PropVal(?p', 7r,7v)))
Constraints
Every constraint resource is a resource:

PropVal(subClassO f, Constraint Resource, Resource)

Constraint properties are all properties that are also constraint resources:

2.7 An Axiomatic Semantics for RDF and RDF Schema 61

Type(?cp, Constraint Property) <—

(T'ype(?cp, Constraint Resource) A Type(?cp, Property))
domain and range are constraint properties:

Type(domain, Constraint Property)

Type(range, Constraint Property)
domain and range define, respectively, the domain and range of a property. Recall that
the domain of a property P is the set of all objects to which P applies. If the domain
of P is D, then for every P(z,y), x € D.

PropVal(domain, 7p, 7d) —

V2N ?y(PropVal(?p, tx, 7y) — Type(?xz,7d))

The range of a property P is the set of all values P can take. If the range of P is
R, then for every P(x,y),y € R.
PropVal(range, ?p, 7r) —
V22V ?y(PropVal(?p, 7z, y) — Type(?y, 1))
Formulas that can be inferred from the preceding ones:

PropVal(domain, range, Property)

PropVal(range, range, Class)

PropV al(domain, domain, Property)

PropVal(range, domain, Class)
Thus we have formalized the semantics of RDF and RDFS. Software equipped with
this knowledge is able to draw interesting conclusions. For example, given that
the range of rents is ResidentialUnit, that ResidentialUnit is a subclass of Unit,
and that rents(JeffMeyer, BaronWayApartment), the agent can automatically deduce

Unit(BaronWayApartment) using the predicate logic semantics or one of the predicate

logic proof systems.

62 Describing Web Resources: RDF

2.8 A Direct Inference System for RDF and RDFS

As stated, the axiomatic semantics detailed in section 2.7 can be used for automated
reasoning with RDF and RDF Schema. However, it requires a first-order logic proof
system to do so. This is a very heavy requirement and also one that is unlikely to scale
when millions (or billions) of statements are involved (e.g., millions of statements of
the form T'ype(?r, 7¢)).

For this reason, RDF has also been given a semantics (and an inference system that
is sound and complete for this semantics) directly in terms of RDF triples instead of
restating RDF in terms of first-order logic, as was done in the axiomatic semantics of

section 2.7.

This inference system consists of rules of the form

IF E contains certain triples

THEN add to E certain additional triples

(where E is an arbitrary set of RDF triples).
Without repeating the entire set of inference rules (which can be found in the official

RDF documents), we give here a few basic examples:

IF E contains the triple (?z, 7p, 7y)

THEN E also contains the triple (?p, rdf : type, rdf : property)

This states that any resource 7p that is used in the property position of a triple can be

inferred to be a member of the class rdf:Property.

A somewhat more interesting example is the following rule:

IF E contains the triples (?u, rdfs : subClass0f, 7v)
and (?v,rdfs : subclass0f, 7w)

THEN E also contains the triple (?u, rdfs : subClass0f, ?w)

which encodes the transitivity of the subclass relation.

Closely related is the rule

2.9 Summary 63

IF E contains the triples (?z, rdf : type, Tu)
and (?u, rdfs : subClassOf, 7v)

THEN E also contains the triple (?z, rdf : type, 7v)

which is the essential definition of the meaning of rdfs:subClassOf.

A final example often comes as a surprise to people first looking at RDF Schema:

IF E contains the triples (?z, 7p, 7y)
and (?p,rdfs : range, Tu)

THEN E also contains the triple (?y, rdf : type, 7u)

This rule states that any resource 7y which appears as the value of a property 7p can
be inferred to be a member of the range of 7p. This shows that range definitions in
RDF Schema are not used to restrict the range of a property, but rather to infer the
membership of the range.

The total set of these closure rules is no larger than a few dozen and can be effi-

ciently implemented without sophisticated theorem-proving technology.

2.9 Summary

e RDF provides a foundation for representing and processing machine understand-

able data.

e RDF has a graph-based data model. Its key concepts are resource, property,

statement, and graph. A statement is a resource-property-value triple.

e RDF has three standard syntaxes (Turtle, RDF/XML, and RDFa) to support syn-

tactic interoperability.

e RDF has a decentralized philosophy and allows incremental building of knowl-

edge, and its sharing and reuse.

64 Describing Web Resources: RDF

e RDF is domain-independent. RDF Schema provides a mechanism for describing

specific domains.

e RDF Schema is a primitive ontology language. It offers certain modeling prim-
itives with fixed meaning. Key concepts of RDF Schema are class, subclass

relations, property, subproperty relations, and domain and range restrictions.

Suggested Reading

The following are some official online documents:

e B. Adida and M. Birbeck. RDFa Primer: Bridging the Human and Data Webs.
W3C Working Group Note. October 4, 2008.

www.w3.org/TR/xhtml-rdfa-primer/.

e D. Beckett, ed. RDF/XML Syntax Specification (Revised). W3C Recommenda-
tion. February 10, 2004.

www.w3.org/TR/rdf-syntax-grammar/.

e D. Beckett, T. Berners-Lee, and E. Prud’hommeaux, eds. Turtle: Terse RDF
Triple Language. W3C Working Draft. August 9, 2011.

http://www.w3.org/TR/turtle/.

e D. Brickley and R.V. Guha, eds. RDF Vocabulary Description Language 1.0:
RDF Schema. W3C Recommendation. February 10, 2004.

www.w3.org/TR/rdf-schema/.

e R. Fikes and D. McGuinness. An Axiomatic Semantics for RDF, RDF Schema
and DAML+OIL. March 2001.

www.daml.org/2001/03/axiomatic-semantics.html.

e P. Hayes, ed. RDF Semantics. W3C Recommendation. February 10, 2004.
www.w3.org/TR/rdf-mt/.

2.9 Summary 65

e G. Klyne andJ. Carroll, eds. Resource Description Framework (RDF): Concepts
and Abstract Syntax. W3C Recommendation. February 10, 2004.

www.w3.org/TR/rdf-concepts/.

e F. Manola and E. Miller, eds. RDF Primer. W3C Recommendation. February
10, 2004.

www.w3.org/TR/rdf-primer/.

e E. Prud’hommeaux and A. Seaborne, eds. SPARQL Query Language for RDF.
W3C Candidate Recommendation. June 14, 2007.

www.w3.org/TR/rdf-sparql-query/.
Here are some further useful readings:

e C. Bizer and Richard Cyganiak. SPARQL The Trig Syntax.

www4.wiwiss.fu-berlin.de/bizer/trig/.

Exercises and Projects

1. List 10 URIs that identify things in your environment.

2. Give several examples of how to extend the definition of literals in RDF. Why

would this be useful?

3. Read the RDFS namespace, and try to understand the elements that were not

presented in this chapter.

4. The RDFS specification allows more than one domain to be defined for a prop-
erty and uses the intersection of these domains. Discuss the pros and cons of

taking the union versus taking the intersection of domains.

5. In an older version of the RDFS specification, rdfs:subClassOf was not allowed

to have cycles. Try to imagine situations where a cyclic class relationship would

66

Describing Web Resources: RDF

10.

11.

12.

13.

be beneficial. (Hint: Think of equivalence between classes.)

. Discuss the difference between the following statements, and draw graphs to

illustrate the difference:

X supports the proposal; Y supports the proposal; Z supports the proposal.

The group of X, Y, and Z supports the proposal.

Prove the inferred formulas at the end of section 2.7 using the previous axioms.

. Discuss why RDF and RDFS do not allow logical contradictions. Any RDF/S

document is consistent; thus it has at least one model.
Try to map the relational database model on RDF.
Compare entity-relationship modeling to RDF.

Model part of a library in RDF Schema: books, authors, publishers, years,
copies, dates, and so on. Then write some statements in RDF. Use the Turtle
syntax and make sure that your RDF is syntactically valid using a validator. See

http://librdf.org/parse or http://www.rdfabout.com/demo/validator/

Write an ontology about geography: cities, countries, capitals, borders, states,

and so on.

Right a small web page about yourself. Identify the concepts and relations in the
page and build a small ontology representing these. If possible, make use of a

preexisting ontology. Mark up the page using this ontology.

In the following you are asked to think about limitations of RDFS. Specifically,

what should actually be expressed, and can it be represented in RDF Schema? These

limitations will be relevant in chapter 4, where we present a richer modeling language.

1.

Consider the classes of males and females. Name a relationship between them

that should be included in an ontology.

2.9 Summary 67

2. Consider the classes of persons, males, and females. Name a relationship be-
tween all three that should be included in an ontology. Which part of this rela-

tionship can be expressed in RDF Schema?

3. Suppose we declare Bob and Peter to be the father of Mary. Obviously there is a

semantic error here. How should the semantic model make this error impossible?
4. What relationship exists between “is child of” and “is parent of”?

5. Consider the property eats with domain animal and range animal or plant. Sup-
pose we define a new class vegetarian. Name a desirable restriction on eats for
this class. Do you think that this restriction can be expressed in RDF Schema by

using rdfs:range?

Chapter 3

Querying the Semantic Web

In the previous chapter, we saw how we can represent knowledge using RDF. Once
information is represented in RDF, we need to be able to access relevant parts of it both
for reasoning and developing applications. In this chapter, we look specifically at a
query language, called SPARQL, for letting us select, extract, and otherwise easily get
a hold of particular sections of knowledge expressed in RDF. SPARQL is specifically
designed for RDF, and is tailored to and relies upon the various technologies underlying
the web. If you are familiar with database query languages like SQL, you will notice
many similarities. If you are not, this chapter does not make any assumptions and will

provide everything you need to get started.

Chapter Overview

We begin the chapter by discussing the infrastructure (i.e., software) that enables
SPARQL queries to be performed. We then discuss the basics of SPARQL, and pro-
gressively introduce more complex parts of it. Finally, we wrap up with a discussion

of ways to collect RDF from the Semantic web.

69

70 Querying the Semantic Web

3.1 SPARQL Infrastructure

To perform a SPARQL query, one needs software to execute the query. The most
common software that does this is called a triple store. Essentially, a triple store is
a database for RDF. You can download a number of triple stores online. Within the
specifications for SPARQL a triple store is referred to as a Graph Store.

Before one can query a triple store, it needs to be populated with RDF. Most triple
stores provide bulk upload options. There is also a mechanism called SPARQL Update,
which provides a series of options for inserting and loading as well as deleting RDF
into a triple store. SPARQL Update will be discussed later in the chapter.

Once data is loaded into a triple store, it can be queried by sending SPARQL queries
using the SPARQL protocol. Each triple store provides what is termed an endpoint,
where SPARQL queries can be submitted. An important point is that clients send
queries to an endpoint using the HTTP protocol. Indeed, you can issue a SPARQL
query to an endpoint by entering it into your browser’s URL bar! However, we suggest
obtaining a client designed specifically for SPARQL. Again, there are a number of
them available on-line.

Because SPARQL uses standard web technologies, you will find numerous
SPARQL endpoints on the web. These endpoints provide access to large amounts
of data. For example, dbpedia.org/spargl provides a query endpoint to query over an
RDF representation of Wikipedia. You’ll find a complete list of SPARQL endpoints at
CKAN.org.

Once we have this basic infrastructure, we can start writing SPARQL queries.

3.2 Basics: Matching Patterns

Recall from the previous chapter the RDF describing the Baron Way apartment and its

location:

3.2 Basics: Matching Patterns 71

Qprefix swp: <http://www.semanticwebprimer.org/ontology/apartments.ttl#>.
Qprefix dbpedia: <http://dbpedia.org/resource/>.

Qprefix dbpedia-owl: <http://dbpedia.org/ontology/>.

swp:BaronWayApartment swp:hasNumberOfBedrooms 3;
swp:isPartOf swp:BaronWayBuilding.
swp:BaronWayBuilding dbpedia-owl:location dbpedia:Amsterdam,
dbpedia:Netherlands.

We might like to ask a query over this data. For example: find the location of
the building. How would we express this in SPARQL? We can build up this query as

follows. We would want to match the following triple:

swp:BaronWayBuilding dbpedia-owl:location dbpedia:Amsterdam.

In SPARQL, we can just replace any element of the triple with a variable. Variables
are denoted by a 7 at their beginning. Introducing a variable for location, we would

write the following:

swp:BaronWayBuilding dbpedia-owl:location ?location.

The triple store will take this graph pattern and try to find sets of triples that match
the pattern. Thus, running this pattern over the original RDF, a triple store would
return dbpedia:Amsterdam and dbpedia:Netherlands. Essentially, it finds all triples
where swp:BaronWayBuilding is in the subject position and dbpedia-owl:location is in
the predicate position.

To make this a complete SPARQL query, a couple of additions need to be made.
First, all prefixes need to be defined. We also need to tell the triple store that we are
interested in the results for a particular variable. Thus, a complete SPARQL query for

the above query would be as follows:

72 Querying the Semantic Web

PREFIX swp: <http://www.semanticwebprimer.org/ontology/apartments.ttl#>.
PREFIX dbpedia: <http://dbpedia.org/resource/>.

PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>.

SELECT ?location

WHERE {

swp:BaronWayBuilding dbpedia-owl:location ?location.

Like Turtle, the PREFIX keyword denotes various abbreviations for URLs. The
SELECT keyword indicates which variables are of interest. The graph pattern that
needs to be matched appears with brackets after the WHERE keyword. The results of
the query are returned in a set of mappings called bindings that denote which elements
correspond to a given variable. Each row in the table is a single result or binding. So

for a result of this query we would get:

?location

http://dbpedia.org/resource/ Amsterdam.

http://dbpedia.org/resource/Netherlands.

The whole basis of SPARQL is this simple notion of trying to find sets of triples that
match a given graph pattern. SPARQL provides increasing functionality for specifying
more complex patterns and providing results in different formats; but no matter how
complex the pattern, the same procedure applies. Take another example: find where

the BaronWayApartment is located. The SPARQL query for this is:

PREFIX swp: <http://www.semanticwebprimer.org/ontology/apartments.ttl#>.
PREFIX dbpedia: <http://dbpedia.org/resource/>.

PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>.

SELECT 7?location

WHERE {

3.2 Basics: Matching Patterns 73

swp:BaronWayApartment swp:isPartOf 7building.

?building dbpedia-owl:location ?location.

We have just extended our graph pattern. There are a couple of things to note about
this query: First, the variable is also in the subject position. Variables can occur in any
position in the SPARQL query. Second, the query reuses the variable name ?building.
In this way, the triple store knows that it should find triples where the object of the first
statement is the same as the subject of the second statement. We leave it to the reader
to determine the answer to the query.

We are not limited to matching a single variable. We might want to find all the in-

formation about Baron Way Apartment in the triple store. One could use this SPARQL

query:

PREFIX swp: <http://www.semanticwebprimer.org/ontology/apartments.ttl#>.
PREFIX dbpedia: <http://dbpedia.org/resource/>.

PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>.

SELECT 7p 70

WHERE {

swp:BaronWayApartment 7p 7o.

Which would return the following results:

i) 20
swp:hasNumberOfBedrooms 3
swp:isPartOf swp:BaronWayBuilding

Again, each row in the table is a separate result that matches the graph pattern. For

our rather small dataset, all possible answers can be easily returned. However, on larger

74 Querying the Semantic Web

PREFIX swp: <http://www.semanticwebprimer.org/ontology/apartments.ttl#>.
PREFIX dbpedia: <http://dbpedia.org/resource/>.
PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>.
SELECT 7p 70
WHERE {
swp:BaronWayApartment 7p 7o.

LIMIT 10

Figure 3.1: A SPARQL query with LIMIT

data sets we may not know how many results there are or if our query would return a
whole dataset. Indeed it is fairly easy to write queries that can return millions of triples.
Therefore, it is good practice to limit the number of answers a query returns, especially
when using public endpoints. This can be simply done by using the LIMIT keyword as
shown in figure 3.1. In this figure, we limit the number of results to be returned to ten.

We saw before how we can match single patterns or chains of triple patterns.
SPARQL provides a way of expressing concisely chains of properties. This facility
is called property paths. Take the following example. Find all the apartments which

are part of a building located in Amsterdam.

PREFIX swp: <http://www.semanticwebprimer.org/ontology/apartments.ttl#>.
PREFIX dbpedia: <http://dbpedia.org/resource/>.
PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>.
SELECT 7?apartment
WHERE {
?apartment swp:isPartOf 7building.

?building dbpedia-owl:location dbpedia:Amsterdam.

We can express the same thing as:

PREFIX ex: <http://www.example.org/>

3.3 Filters 75

PREFIX dbpedia: <http://dbpedia.org/resource/>
PREFIX geo: <http://www.geonames.org/ontology#>.
SELECT ?tournament

WHERE {

7apartment swp:isPartOf/dbpedia-owl:location dbpedia:Amsterdam..

There are a number of other property paths that can be used to help express long or
arbitrary paths in queries. More of these constructs will be highlighted in the chapter.
However, as the reader writes more complex SPARQL these property path shortcuts
may become more useful.

We can accomplish quite a bit just through matching graph patterns. However,
sometimes we want to put more complex constraints on the results of our queries. In

the next section, we discuss how to express those constraints using filters.

3.3 Filters

Continuing with the apartments example, let’s find all the apartments that have 3 bed-
rooms. So far, we have seen examples where we have queried using only resources in
the graph patterns but not literals. However, literals can be included in graph patterns

straightforwardly. The SPARQL query is as follows:

PREFIX swp: <http://www.semanticwebprimer.org/ontology/apartments.ttl#>.
PREFIX dbpedia: <http://dbpedia.org/resource/>.

PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>.

SELECT 7?apartment

WHERE {

7apartment swp:hasNumberOfBedrooms 3.

76 Querying the Semantic Web

Note that like Turtle, SPARQL allows for shortened forms of common literals.
In this case, 3 is a shortcut for "3"‘xsd:integer. The various syntactic shortcuts for
SPARQL and Turtle are the same.

However, this query is rather contrived. In all likelihood we would want to find
apartments with more or less than a certain number of bedrooms. We can ask this

question in SPARQL using the FILTER keyword:

PREFIX swp: <http://www.semanticwebprimer.org/ontology/apartments.ttl#>.
PREFIX dbpedia: <http://dbpedia.org/resource/>.
PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>.
SELECT ?apartment
WHERE {
7apartment swp:hasNumberOfBedrooms ?bedrooms.

FILTER (?bedrooms > 2).

Resulting in:

Tapartment

swp:BaronWayApartment

Less than, greater than, and equality are supported for numeric data types (i.e.,
integers, decimals) as well as date/time. SPARQL also allows for filtering on strings.

For example, assume that our data set contains the triple:

swp:BaronWayApartment swp:address "4 Baron Way Circle".

We might like to find all the resources that contain "4 Baron Way" in their address.
This can be done using the regular expressions support included within SPARQL. Reg-
ular expressions are a powerful way of expressing string searches. Describing regular
expressions in detail is outside the scope of this book but the authors encourage the

readers to find out more. The regular expression for finding the string “4 Baron Way”

3.3 Filters 77

at the beginning of another string is “ 4 Baron Way”. This would be expressed as

follows:

PREFIX swp: <http://www.semanticwebprimer.org/ontology/apartments.ttl#>.
PREFIX dbpedia: <http://dbpedia.org/resource/>.
PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>.
SELECT ?apartment
WHERE {
7apartment swp:address ?address.

FILTER regex(?address, " "4 Baron Way").

Here, after the FILTER keyword, a specific filter function name is introduced,
regex. The parameters to that function are given in the parentheses afterwards. There
are several other types of filters that SPARQL contains that may be useful in particular
cases. However, the numeric and string filters are the most commonly used. One final
function that is often useful is the str function. This will convert resources and literals
into string representations that can then be used in regex. For example, we can search

for Baron in the URL of the resource instead of using the label like this:

PREFIX swp: <http://www.semanticwebprimer.org/ontology/apartments.ttl#>.
PREFIX dbpedia: <http://dbpedia.org/resource/>.
PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>.
SELECT 7?apartment 7address
WHERE {
7apartment swp:address ?address.

FILTER regex(str(?apartment), "Baron").

78 Querying the Semantic Web

Filters provide us a mechanism for achieving flexibility. SPARQL offers more
constructs to deal with the often inconsistent and varying information that is found on

the Semantic Web.

3.4 Constructs for Dealing with an Open World

Unlike a traditional database, not every resource on the Semantic Web will be described
using the same schema or have all of the same properties. This is called the open world
assumption. For example, some apartments may be more well described than others.
Furthermore, they may be described using a different vocabulary. Take the following

example in RDF:

Oprefix swp: <http://www.semanticwebprimer.org/ontology /apartments.ttl#>.
Oprefix dbpedia: <http://dbpedia.org/resource/>.

Oprefix dbpedia-owl: <http://dbpedia.org/ontology/>.

Oprefix xsd: <http://www.w3.0rg/2001/XMLSchema#>.

swp:BaronWayApartment swp:hasNumberOfBedrooms 3.
swp:BaronWayApartment dbpedia-owl:location dbpedia:Amsterdam.

swp:BaronWayApartment refs:label "Baron Way Apartment for Rent".

swp:FloridaAveStudio swp:hasNumberOfBedrooms 1.

swp:FloridaAveStudio dbpedia-owl:locationCity dbpedia:Amsterdam.

In this case, the Florida Ave studio does not have a human-friendly label
and its location is described using dbpedia-owl:locationCity predicate and not

dbpedia-owl:location. Even with this inconsistency, we still would like to query over

3.4 Constructs for Dealing with an Open World 79

the data and find the apartments located in Amsterdam and return their human-friendly
label if they have one. SPARQL provides two constructs for expressing such a query.

Let’s look at an example query:

PREFIX swp: <http://www.semanticwebprimer.org/ontology/apartments.ttl#>.
PREFIX geo: <http://www.geonames.org/ontology#>.

PREFIX dbpedia: <http://dbpedia.org/resource/>.

PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>.

SELECT 7?apartment ?label

WHERE {
{?apartment dbpedia-owl:location dbpedia:Amsterdam.}
UNION
{?apartment dbpedia-owl:locationCity dbpedia:Amsterdam.}
OPTIONAL

{?apartment rdfs:label ?label.}

The results of this query are:

Tapartment MNabel

swp:BaronWayApartment Baron Way Apartment for Rent

swp:FloridaAveStudio

The UNION keyword tells the triple store to return results that match one or both
graph patterns. The OPTIONAL keyword tells the triple store to return results for the
particular graph pattern if available. That is, the graph pattern does not have to be
satisfied for the query to return. Thus, in this case, without the optional, the studio
apartment would not be returned in the query results.

Similarly, property paths can also be used to create a more concise SPARQL query.

Using the | operator, we can express one or more possibilities. Thus, the above

80 Querying the Semantic Web

SPARQL query can be rewritten as follows:

PREFIX swp: <http://www.semanticwebprimer.org/ontology/apartments.ttl#>.
PREFIX dbpedia: <http://dbpedia.org/resource/>.
PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>.

SELECT 7?apartment ?label

WHERE {
{?apartment dbpedia-owl:location|dbpedia-owl:locationCity dbpedia:Amsterdam.}
OPTIONAL

{?apartment rdfs:label ?label.}

These are just some examples of how SPARQL is designed to easily query knowl-

edge coming from different sources.

3.5 Organizing Result Sets

It is often the case that we want the results of our queries to be returned in a particular
way, either grouped, counted, or ordered. SPARQL supports a number of functions
to help us organize our results sets. We already saw how we can limit the number of
results using the the LIMIT keyword. We can also eliminate duplicate results from
the results set using the DISTINCT keyword by placing it after the select keyword
(e.g., SELECT DISTINCT ?name WHERE). This will ensure that only unique variable
bindings are returned.

SPARQL also enables the ordering of a returned result set using the ORDER BY
keyword. For example, we can ask for the apartments ordered by the number of bed-

rooms.

PREFIX swp: <http://www.semanticwebprimer.org/ontology/apartments.ttl#>.

3.5 Organizing Result Sets 81

PREFIX dbpedia: <http://dbpedia.org/resource/>.
PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>.

SELECT 7?apartment ?bedrooms
WHERE {

7apartment swp:hasNumberOfBedrooms ?bedrooms.

}
ORDER BY DESC(?bedrooms)

Which would return:

Tapartment ?bedrooms
swp:BaronWayApartment 3
swp:FloridaAveStudio 1

The keyword DESC denotes descending order. Likewise, ASC denotes ascending
order. Also, note that ordering a string or url is done alphabetically.

We can also collect results set together using aggregate functions. In particular,
we can count the number of results (COUNT), sum over them (SUM), as well as com-
pute the minimum, maximum, and average (MIN, MAX, AVG). Here is an example to

compute the average number of bedrooms in our dataset.

PREFIX swp: <http://www.semanticwebprimer.org/ontology/apartments.ttl#>.
PREFIX dbpedia: <http://dbpedia.org/resource/>.
PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>.

SELECT (AVG(?bedrooms) AS 7avgNumRooms)

WHERE {

7apartment swp:hasNumberOfBedrooms ?bedrooms.

This will return:

82 Querying the Semantic Web

?avgNumRooms

2

The aggregate function is combined with the keyword AS to denote the variable in
the result set. We are not limited to applying these aggregations over the entire result
set. We can also aggregate for particular groups using the GROUP BY keyword.

SPARQL thus provides powerful mechanisms for organizing results in a way that

best suits the application at hand.

3.6 Other Forms of SPARQL Queries

So far, we have focused on selecting certain values from a set of RDF. SPARQL also
supports some other forms of queries. The two queries that are commonly used besides
SELECT are ASK and CONSTRUCT.

The ASK form of query simply checks to see whether a graph pattern exists in a

data set instead of returning a result. For example, the query below would return true.

PREFIX swp: <http://www.semanticwebprimer.org/ontology/apartments.ttl#>.
PREFIX dbpedia: <http://dbpedia.org/resource/>.

PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>.

ASK 7apartment

WHERE {

7apartment swp:hasNumberOfBedrooms 3.

ASK queries are used because they are faster to compute than retrieving an entire
set of results.
The CONSTRUCT form of query is used to retrieve an RDF graph from a larger

set of RDF. Thus, one can query a triple store and retrieve not a list of variable bindings

3.7 Querying Schemas 83

but an RDF graph. For example, we can create a new graph that labels big apartments

as those having more than 2 bedrooms.

PREFIX ex: <http://www.example.org/>
PREFIX dbpedia: <http://dbpedia.org/resource/>
PREFIX geo: <http://www.geonames.org/ontology#>
CONSTRUCT {?apartment swp:hasNumberOfBedrooms ?bedrooms. 7apartment swp:isBigApartment true.}
WHERE{
7apartment swp:hasNumberOfBedrooms ?bedrooms.

}
FILTER (?bedrooms > 2)

This would return the following graph.

Oprefix swp: <http://www.semanticwebprimer.org/ontology/apartments.ttl#>.
@prefix dbpedia: <http://dbpedia.org/resource/>.

Oprefix dbpedia-owl: <http://dbpedia.org/ontology/>.

Oprefix xsd: <http://www.w3.0rg/2001/XMLSchema#>.

swp:BaronWayApartment swp:hasNumberOfBedrooms 3.

swp:BaronWayApartment swp:isBigApartment true.

CONSTRUCT queries are often used to translate between schemas by querying for

particular patterns and substituting in properties from the target schema.

3.7 Querying Schemas

Importantly, because schema information is represented in RDF, SPARQL can be used
to query information about the schema itself. For example, the following is part of the

housing ontology from the previous chapter.

84 Querying the Semantic Web

@prefix swp: <http://www.semanticwebprimer.org/ontology/apartments.ttl#>.
Oprefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>.
Qprefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#t>.

swp:Unit rdf:type rdfs:Class.

swp:ResidentialUnit rdf:type rdfs:Class.

swp:ResidentialUnit rdfs:subClassOf swp:Unit.

swp:Apartment rdf:type rdfs:Class.

swp:Apartment rdfs:subClassOf swp:ResidentialUnit.

Using SPARQL, we can determine the Residential Units in our dataset by querying

both the instance data and schema simultaneously:

PREFIX swp: <http://www.semanticwebprimer.org/ontology/apartments.ttl#>.
PREFIX rdfs: <http://www.w3.0rg/2000/01 /rdf-schema#> .

SELECT 7athlete
WHERE{
?apartment a ?unitType.

?unitType rdfs:subClassOf swp:ResidentialUnit.

}

Notice that we used the same Turtle shorthand, a, to denote rdf:type. The ability to
query over the schema is an important capability of SPARQL and RDF as it allows one

not only to retrieve information, but also to query the semantics of that information.

3.8 Adding Information with SPARQL Update 85

3.8 Adding Information with SPARQL Update

As mentioned in section 3.1, SPARQL also defines a protocol to update the contents
of a triple store. This is the SPARQL Update protocol. Essentially, it adds a series of
new keywords to SPARQL that allow for the insertion, loading, and deleting of triples.

Below we show examples of each type of request.

Inserting and Loading Triples The following inserts a statement that says Luxury
Apartment is a subclass of Apartment. It appends the triple to whatever content was

already in the triple store.

PREFIX swp: <http://www.semanticwebprimer.org/ontology/apartments.ttl#>.

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schemat> .

INSERT DATA
{

swp:LuxuryApartment rdfs:subClassOf swp:Apartment.

Note that the data itself is just the Turtle syntax that we are familiar with from
chapter 2.
If you have a large file containing RDF available on the web, you can load it into a

triple store using the following command:

LOAD <http://example.com/apartment.rdf>

Deleting Triples There are a couple of ways to delete triples from a triple store.
One is to specify exactly what triples you want to delete using the DELETE DATA

keywords. Deleting the triples inserted above would look like this:

86 Querying the Semantic Web

PREFIX swp: <http://www.semanticwebprimer.org/ontology/apartments.ttl#>.
PREFIX rdfs: <http://www.w3.0rg/2000/01 /rdf-schema#> .

DELETE DATA
{

swp:LuxuryApartment rdfs:subClassOf swp:Apartment.

Note that in this form no variables are allowed and all triples must be fully specified.
For a more flexible form, one can use the DELETE WHERE construct. This re-
moves the triples that are matched by the specified graph pattern. The following would
remove all the triples containing information about apartments with more than two

bedrooms.

PREFIX swp: <http://www.semanticwebprimer.org/ontology/apartments.ttl#>.
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .

WHERE{
7apartment swp:hasNumberOfBedrooms 7bedrooms.

FILTER (?bedrooms > 2)

In both cases if the pattern is not matched or the triples are not in the triple store
then nothing happens.
Finally, to remove all the contents of a triple store the CLEAR construct can be

used as follows:

CLEAR ALL

3.9 The Follow Your Nose Principle 87

SPARQL Update provides several more constructs for managing parts of triple
stores. The update operations are particularly useful if one is progressively adding
data to a triple store. In the following section, we discuss a particular case where such

update operations are useful.

3.9 The Follow Your Nose Principle

SPARQL provides facilities to query and update triple stores. But how do these triple
stores get populated? As mentioned earlier, many data providers make their data avail-
able via SPARQL endpoints. However, other data providers only make their data avail-
able as Linked Data. That is, RDF data made available either as files on the web or
embedded in web pages. We can insert these triples into our local triples store. How-
ever, the Semantic Web allows any provider to describe their information using other
resources and information on the web. In these cases, the follow your nose principle
can be applied: Given a URL that points to some RDF, one can dereference that URL
and load the corresponding data. One can continue to do so until there are enough
triples to answer the given query.

Some query engines such as SQUIN implement this feature (see
http://squin.sourceforge.net/). ~ Also, the newer version of SPARQL includes
commands for such federated querying. However, such federated querying is often
time intensive because the data must be collected at query time.

Following your nose is one way to collect the information needed to process a query

using the Semantic Web.

3.10 Summary

In this chapter, we introduced SPARQL, both its query and update portions, as well as

the basic infrastructure that supports SPARQL.

88 Querying the Semantic Web

o SPARQL selects information by matching graph patterns, and provides facilities

for filtering based on both numeric and string comparisons.
e SPARQL queries follow a syntax similar to Turtle.
e Both data and schemas can be queried using SPARQL.

e UNION and OPTIONAL are constructs that allow SPARQL to more easily deal

with open world data.

e SPARQL Update provides mechanisms for updating and deleting information

from triples stores.

Suggested Reading

ARQ SPARQL Tutorial. http://jena.sourceforge.net/ARQ/Tutorial/.

S. Harris and A. Seaborne, eds. SPARQL 1.1 Query Language. W3C Working Draft
(work in progress), 12 May 2011.
http://www.w3.org/TR/sparqll1-query/.

A. Polleres, P. Gearon, and A. Passant, eds. SPARQL 1.1 Update. W3C Working

Draft (work in progress), 12 May 2011. www.w3.org/TR/sparql11-update/.

E. Torres, L. Feigenbaum, and K. Clark, eds. SPARQL Protocol for RDF. W3C Rec-

ommendation, 15 January 2008. www.w3.org/TR/rdf-spargl-protocol/.

Exercises and Projects

1. Take one of the queries given in this chapter. Draw a diagram of the underlying
data as a graph. Draw a second diagram labeling the variables from the selected

query. Can you express the query as a diagram as well?

3.10 Summary 89

2. Think about what makes a SPARQL query difficult for a triple store to answer.

Discuss what factors play into the difficulty in answering a query.

3. Compare SPARQL and SQL. What are the differences and similarities in the

languages?

4. Perform several queries on http://www.dbpedia.org using one of the pro-
vided web interfaces to perform the queries: http://dbpedia.org/snorql/ or

http://dbpedia.org/sparql. Discuss what is difficult about building the queries.

5. Download and install a triple store. = Examples include 4store, Virtu-
0so, Sesame, and OWLIM. Load RDF available at the book’s website
(www.semanticwebprimer.ord) and see if you can answer all the queries in this
chapter. If the triple store supports reasoning, do the answers to the queries

change depending on the results?

6. Discuss how SPARQL uses other web standards (e.g., HTTP).

7. What is the benefit of an ontology in building SPARQL queries?

8. For a larger assignment, work in teams of 2 to 4 to develop a web applica-
tion. Use an ontology from the previous chapter as its basis. For example,
one could develop an apartment or book finding application. Instead of a stan-
dard database as data storage, use a triple store. We suggest using the rdfquery
javascript library (http://code.google.com/p/rdfquery/) to interact with the triple
store from web pages. Also, a PHP (Hypertext Preprocessor) engine such as RAP
(http://www4.wiwiss.fu-berlin.de/bizer/rdfapi/) is another option. Once the ap-
plication is built, write a report identifying the strengths and weaknesses of using

both an ontology and a triple store for web applications.

Chapter 4

Web Ontology Language:
OWL2

4.1 Introduction

The variety of things you can say in RDF and RDF Schema that we discussed in the pre-
vious chapters is deliberately very limited. RDF is (roughly) limited to binary ground
predicates, and RDF Schema is (roughly) limited to a subclass hierarchy and a prop-
erty hierarchy, with domain and range definitions of these properties. The languages
are designed with flexibility in mind.

However, in many cases we need to express more advanced, more ‘expressive,’
knowledge — for example, that every person has exactly one birth date, or that no person
can be both male and female at the same time.

Successive W3C working groups,' the Web Ontology Working Group and the
OWL Working Group, identified a number of characteristic use cases for the Semantic

Web that require much more language features than those that RDF and RDFS have

ISee www.w3.0rg/2001/sw/WebOnt/ and http://www.w3.org/2007/OWL /wiki/OWL _
Working _ Group, respectively.

91

92 Web Ontology Language: OWL?2

to offer. The resulting language, OWL2, for the Web Ontology Language, is closely
related to a fragment of a family of logics that are specially crafted for representing
terminological knowledge. These Description Logics (DL) have a long history, and
their features are well understood by the community. OWL2 is the second iteration of

the OWL language.

Chapter Overview

In this chapter, we first describe the motivation for OWL2 in terms of its requirements
(section 4.2) and its relation with RDF and RDFS (section 4.3). We then describe the
various language elements of OWL2 in detail in section 4.4, followed by a discussion

of three OWL2 profiles (section 4.5).

4.2 Requirements for Ontology Languages

We have seen in the previous chapters that RDF and RDFS allow us to describe classes,
or ‘concepts,’ that exist in a domain, and share these descriptions across the web. An
explicit formal specification of the concepts in a domain is called an ontology. Lan-
guages that allow us to express ontologies are therefore called ontology languages. The
main requirements for these languages are: a well-defined syntax, a formal semantics,

sufficient expressive power, convenience of expression, and efficient reasoning support.

4.2.1 Syntax

The importance of a well-defined syntax is clear and known from the area of program-
ming languages; it is a necessary condition for machine processing of information. A
syntax is well-defined if you can use it to write down everything a language allows you
to express in an unambiguous manner. All the languages we have presented so far have

a well-defined syntax. As we will see, OWL2 builds on RDF and RDFS and uses an

4.2 Requirements for Ontology Languages 93

extension of their syntax.

A well-defined syntax is not necessarily very user-friendly. For instance, the
RDF/XML syntax is notoriously hard for people to read. However, this drawback
is not very significant because most ontology engineers will use specialized ontology

development tools, rather than a text editor, for building ontologies.

4.2.2 Formal Semantics

A formal semantics describes the meaning of a language precisely. Precisely means
that the semantics does not refer to subjective intuitions, nor is it open to different in-
terpretations by different people (or machines). The importance of a formal semantics

is well-established in the domain of mathematical logic, for instance.

The combination of formal semantics with a well-defined syntax allows us to inter-
pret sentences expressed using the syntax: we now know what is meant by the sentence.
Formal semantics also allows us to reason about the knowledge expressed in the sen-
tences. For instance, the formal semantics of RDFS allows us to reason about class

membership. Given:

:x rdf:type :C.
:C rdfs:subClassOf :D .

we can infer that :x is an instance of :D. The rdfs:domain and rdfs:range properties

allow similar inferences:

:p rdfs:range :D.

X p .

allows us to infer that :y rdf:type :D.

94 Web Ontology Language: OWL?2

4.2.3 Expressivity

Unfortunately, the expressive power of RDF and RDFS is very limited in some areas.
We often need to provide more precise definitions than what RDF and RDFS allow us

to state. If we build ontologies, we may want to be able to reason about:

Class Membership We have seen that RDFS has some simple mechanisms for deter-
mining class membership of individual instances using subclass and domain and
ranges. However, a more precise description of the conditions under which an
instance can be considered to belong to a class would allow for more fine-grained
reasoning. For instance, if we have declared that certain property-value pairs are
a sufficient condition for membership in a class :A, then if an instance :x satisfies
these conditions, we can conclude that :x must be an instance of :A: something

is only a tennis match if it involves at least players, rackets, etc.

Classification Similarly, we would like to use the conditions on class membership to
infer relations between the classes themselves. For instance, a simple definition

of a tennis match can be reused to define badminton matches.

Equivalence and Equality It can be very useful to express equivalence between
classes. For example, the class :Tortoise shares all its members with the class
:Land_ Turtle; they are therefore equivalent. Similarly, we would like to be
able to state when two instances are the same: the :morning star and the
:evening _star are names for the same planet :venus; these instances are there-
fore the same. Again, being able to express this directly is nice, but it should also
be possible to determine equivalence and equality by applying formal semantics

to the description of our classes.

Disjointness and Difference Analogously, sometimes we know that two classes do

not share any instances (they are disjoint) or that two instances are decidedly not

4.2 Requirements for Ontology Languages 95

the same thing. For example, :Winner and :Loser are disjoint, and :roger _federer

and :rafael nadal are different individuals.

Boolean Combinations of Classes Sometimes classes need to be combined in ways
that go beyond subclass relations. For instance, we may want to define the class

:Person to be the disjoint union of the classes :Female and :Male.

Local Scope of Properties rdfs:range states that the instances in the range of a prop-
erty, say :plays, all belong to a certain class. Thus in RDFS we cannot declare
range restrictions that differentiate between contexts. For example, we cannot

say that tennis players play only tennis, while other people may play badminton.

Special Characteristics of Properties Sometimes it is useful to say that a property is
transitive, such as :greater _than; unique, like :is_mother _of; or the inverse of

another property, such as :eats and :is_eaten _by.

Cardinality Restrictions Sometimes we need to place restrictions on how many dis-
tinct values a property may or must take. For example, each person has exactly

two parents, and a course is taught by at least one lecturer.

Consistency Once we can determine relations between classes, we may also want to
determine conflicts between their definitions. Suppose we have declared :Fish
and :Mammal to be disjoint classes. It is then an error to assert that :dolphin is
an instance of both. A sufficiently expressive ontology language should allow us

to detect these types of inconsistencies.

Finally, an ontology language must make it as convenient as possible to build sen-
tences that make use of its expressiveness. For instance, a language is not very conve-
nient if we would need to reiterate entire definitions every time we want to state that

two classes are equivalent.

96 Web Ontology Language: OWL?2

4.2.4 Reasoning Support

Formal semantics is a prerequisite for reasoning support. Derivations such as the pre-
ceding ones can be made mechanically instead of by hand. Automatic reasoning is

important because it allows us to check the correctness of the ontology. For instance:

e check the consistency of the ontology

e check for unintended relations between classes

e check for unintended classifications of instances

Automated reasoning support allows one to check many more cases than could be
checked manually. Checks like the preceding ones are extremely valuable for designing
large ontologies, for cases where multiple authors are involved, and for integrating and

sharing ontologies from various sources.

We can provide formal semantics and reasoning support to an ontology language
by mapping it to a known logical formalism, and by using automated reasoners that

already exist for those formalisms.

It is clear that we need an ontology language that is richer than RDF Schema, a
language that offers these features and more. In designing such a language one should
be aware of the trade-off between expressive power and efficient reasoning support.
Generally speaking, the richer the logical formalism, the less efficient the reasoning
support becomes, often crossing the border of decidability; that is, reasoning on such
logics is not guaranteed to terminate. We therefore need a compromise, a language that
can be supported by reasonably efficient reasoners, while being sufficiently expressive

to represent a large variety of knowledge.

4.3 Compatibility of OWL2 with RDF/RDFS 97

4.3 Compatibility of OWL2 with RDF/RDFS

Ideally, OWL2 is an extension of RDF Schema, in the sense that OWL2 adopts the
RDFS meaning of classes and properties (rdfs:Class, rdfs:subClassOf, etc.) and adds
language primitives to support the richer expressiveness required. This approach would
be consistent with the layered architecture of the Semantic Web (see figure 1.4).
Unfortunately, simply extending RDF Schema would work against obtaining ex-
pressive power and efficient reasoning. RDF Schema has some very powerful modeling
primitives. Constructions such as rdfs:Class (the class of all classes) and rdfs:Property
(the class of all properties) are very expressive and would lead to uncontrollable com-
putational properties if the logic underlying OWL2 included these primitives in their

generality.

4.3.1 Two Semantics

The full set of requirements for an ontology language seems unobtainable: efficient
reasoning support does not exist for a language as expressive as a combination of RDF
Schema with a full logic. Indeed, these requirements have prompted the successive
W3C working groups to split OWL2 into two different sublanguages, each with a dif-
ferent underlying semantics geared toward fulfilling different aspects of the full set of

requirements.”

4.3.1.1 OWL2 Full: RDF-Based Semantics

The entire language is called OWL2 Full and uses all the OWL2 language primitives.
It also allows the combination of these primitives in arbitrary ways with RDF and RDF
Schema. This includes the ability to change the meaning of the predefined (RDF or

OWL2) primitives by applying the language primitives to each other. For instance,

2The first version of OWL included a third sublanguage, called “OWL Lite.” However, this language has
been superseded by the “profiles” discussed in section 4.5.

98 Web Ontology Language: OWL?2

in OWL2 Full, we could impose a cardinality constraint on the class of all classes,
essentially limiting the number of classes that can be described in any ontology.

The advantage of OWL2 Full is that it is mapped to an RDF-based semantics. It
is therefore both structurally and semantically fully upward-compatible with RDF: any
legal RDF document is also a legal OWL2 Full document, and any valid RDF Schema
inference is also a valid OWL2 Full conclusion. The disadvantage of OWL2 Full is
that the language has become so powerful as to be undecidable, dashing any hope of

complete (or efficient) reasoning support.

4.3.1.2 OWL2 DL: Direct Semantics

In order to regain computational efficiency, the second sublanguage OWL2 DL is
mapped onto a description logic (DL). Description logics are a subset of predicate logic
for which efficient reasoning support is possible. OWL2 DL restricts the way in which

the primitives of OWL2, RDF, and RDFS may be used. Some of these restrictions are:
e OWL2 DL does not allow the application of OWL2’s primitives to each other.

e Secondly, OWL2 DL can only define classes of non-literal resources. All OWL2

DL classes are instances of owl:Class rather than rdfs:Class.

e Thirdly, OWL2 DL strictly separates properties for which the range includes
non-literal resources from those that relate to literal values. All OWL2 DL prop-
erties are instances of either owl:ObjectProperty or owl:DatatypeProperty but

not both.

e Finally, in OWL2 DL a resource cannot be a class, property, or instance at the
same time. They may share the same name (this is called “punning”) but will

always be treated as distinct things by the underlying logic.

The above restrictions ensure that the language maintains its direct correspondence

to a well-understood description logic. Figure 4.1 shows the subclass relationships

4.3 Compatibility of OWL2 with RDF/RDFS 99

rdfs:Resource

rdf:Property

rdfs:Class

(rdfs:Literal) ¢ owl:ObjectProperty)

-

owl:DatatypeProperty

* disjoint

Figure 4.1: Subclass relationships between OWL2 and RDF/RDFS

between some modeling primitives of OWL2 and RDF/RDFS.

The advantage of this limited expressiveness is that it permits efficient reasoning
support. OWL2 DL can make use of a wide range of existing reasoners such as Pellet,
FaCT, RACER, and HermiT. The disadvantage is that we lose full compatibility with
RDFE. An RDF document will in general have to be extended in some ways and re-
stricted in others before it is a legal OWL2 DL document. However, every legal OWL2

DL document is a legal RDF document.

One of the main motivations behind the layered architecture of the Semantic Web
(see figure 1.4) is a hope for downward compatibility with corresponding reuse of soft-
ware across the various layers. However, the advantage of full downward compatibility
for OWL2 (any OWL2-aware processor will also provide correct interpretations of any
RDF Schema document) is only achieved with OWL2 Full, at the cost of computational

intractability.

In section 4.5 we will continue this discussion in relation to three additional pro-
files of OWL2, each of which seeks a different trade-off between expressiveness and

efficient reasoning.

100 Web Ontology Language: OWL2

4.4 The OWL Language

This section introduces the language primitives of OWL2. Because of its close affinity

with formal logic, it is convenient to adopt some of the related vocabulary:

e In OWL2, the members of classes are commonly called individuals rather than

instances, but we will use the two terms interchangeably.

e When we state that some resource is of a certain type, we call this an assertion.

For instance:
:roger _federer rdf:type :Person .

is a class assertion relating the individual :roger federer to its class.

e When we combine classes, properties, and instances, they form expressions. For

instance:

_:x rdf:type owl:Class ;

owl:unionOf (:Man :Woman) .

is a class expression that specifies the (anonymous) union of the classes :Man

and :Woman.

e [f we then relate this definition to one of our classes, we create an axiom. For

example:

:Person owl:equivalentClass _:x .
_x rdfitype owl:Class ;

owl:unionOf (:Man :Woman) .

is an equivalent class axiom that states that the class :Person is equivalent to the
union we introduced above. Class axioms are sometimes called restrictions, as

they constrain the set of individuals that can be a member of a class.

4.4 The OWL Language 101

It is useful to keep in mind that OWL2 is essentially a language for describing sets
of things. These sets are called ‘classes.” Any statement we make about a class in

OWL2 is meant to differentiate that class from the set of all things.

4.4.1 Syntax

OWL2 builds on RDF and RDF Schema and thus can be expressed using all valid RDF
syntaxes. However, many syntaxes exist for OWL2, each of which has its own benefits

and drawbacks:

Functional-Style Syntax This syntax closely relates to the formal structure of ontolo-
gies. It is used in the language specification document, in the definitions of the
semantics of OWL2 ontologies, the mappings from and into RDF syntaxes, and
the different profiles of OWL2. It is much more compact and readable than many
of the other syntaxes. For instance, the above class restriction can be written in

this syntax as:
EquivalentClasses(:Person ObjectUnionOf(:Man :Woman))

OWL/XML This is an XML syntax for OWL2 that does not follow the RDF conven-
tions, but closely maps onto the functional-style syntax.? The main benefit of this
syntax is that it allows us to interact with ontologies using standard off-the-shelf
XML authoring tools. For example, the OWL/XML syntax of the equivalent

class axiom is:

<EquivalentClasses>
<Class abbreviatedIRI=":Person" />
<ObjectUnionOf>
<Class IRI="#Man"/>

3This OWL/XML serialization is defined in http://www.w3.org/TR/owl-xml-serialization/. It
should not be confused with the older OWL/XML presentation syntax (defined in http://www.w3.org/
TR/owl-xmlsyntax), which was based on the Abstract Syntax of the first version of OWL.

102 Web Ontology Language: OWL2

<Class IRI="#Woman" />
< /ObjectUnionOf>

< /EquivalentClasses>

Manchester Syntax Originally developed by the University of Manchester, this syn-
tax is designed to be as human-readable as possible. It is the syntax used in the

user interface of most current ontology editors such as Protégé.

Class: Person

EquivalentTo: Man or Woman

In addition to these syntaxes, all RDF syntaxes can be used for OWL. Therefore, in

this chapter, we will keep using the Turtle syntax introduced in the preceding chapters.

4.4.2 Ontology Documents

When using the Turtle syntax, OWL2 ontology documents, or simply ontologies, are
just like any other RDF document. OWL2 ontologies minimally introduce the follow-

ing namespaces:

@prefix owl: <http://www.w3.0rg/2002/07 fowl#> .

Qprefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
Qprefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .
Qprefix xsd: <http://www.w3.0rg/2001/XMLSchema#> .

An OWL2 ontology starts with a collection of assertions for housekeeping purposes.
These assertions introduce a base namespace, the ontology itself, its name, possible

comments, version control, and inclusion of other ontologies. For example:

Qprefix : <http://www.semanticwebprimer.org/ontologies/apartments.ttl#> .
Qprefix dbpedia-owl: <http://dbpedia.org/ontology/> .

@prefix dbpedia: <http://dbpedia.org/resource/> .

4.4 The OWL Language 103

Q@base <http://www.semanticwebprimer.org/ontologies/apartments.ttl> .

<http://www.semanticwebprimer.org/ontologies/apartments.tt|>
rdf:type owl:Ontology ;

rdfs:label "Apartments Ontology" ~ “xsd:string ;

HAA

rdfs:comment "An example OWL2 ontology" ~ “xsd:string ;

owl:versionlIRI <http://www.semanticwebprimer.org/ontologies/apartments.ttl#1.0> ;
owl:imports <http://dbpedia.org/ontology/> ;

owl:imports <http://dbpedia.org/resource/> .

Imports Only one of these assertions has any consequences for the logical meaning
of the ontology: owl:imports, which points to other ontologies whose axioms are to
be part of the current ontology. Our apartments ontology imports all axioms defined
in the DBPedia ontology, as well as everything in DBPedia itself. This immediately
highlights one of the problems with the owl:imports: in order to be able to use some of
the information in DBPedia, we have to import all 672 million triples described in it.*

While namespaces are used only for disambiguation, imported ontologies provide
definitions that can be used. Typically an ontology contains an import statement for
every namespace it uses, but it is possible to import additional ontologies — for ex-
ample, ontologies that provide definitions without introducing any new names. The
owl:imports property is transitive; that is, if ontology O; imports ontology O;, and

ontology O; imports ontology Oy, then ontology O; also imports ontology Oy,.

4.4.3 Property Types

We discussed in section 4.3.1 that OWL2 distinguishes two types of properties: object
properties and datatype properties. In fact, there are a number of characteristics of

properties for which additional types are provided by OWL2. In this section we briefly

4See http://dbpedia.org/About for the current status.

104 Web Ontology Language: OWL2

discuss each of these types.

Object Properties These properties relate individuals to other individuals. Examples

are :rents and :livesIn:

:rents rdf:type owl:ObjectProperty ;
rdfs:domain :Person ;
rdfs:range :Apartment ;

rdfs:subPropertyOf :livesin .

Datatype Properties These properties relate individuals to literal values of a certain

data type. Examples are :name and :age:

:age rdf:type owl:DatatypeProperty ;

rdfs:range xsd:nonNegativelnteger .

Just as in RDF, OWL2 allows one to use XML Schema datatypes for indicating the
type of a literal or specifying the range of a datatype property.’ User-defined datatypes
can be specified in an XML schema and then used in an OWL2 ontology (see section
4.4.6).

Because of the restrictions of the direct semantics, of the following property types

only the functional property type can be assigned to datatype properties in OWL2 DL.

Annotation Properties Annotation properties are properties that do not carry any
meaning under the direct semantics of OWL2 DL. That is, they are ignored by a DL
reasoner. However, they will be taken into account by RDF Schema and OWL2 Full
reasoners.

Annotation properties are typically used for adding readable labels, comments, or

explanations to OWL2 ontologies, classes, properties, and individuals:

SOWL2 introduces two additional datatypes owl:real and owl:rational defined as super types of
xsd:decimal.

4.4 The OWL Language 105

:label rdf:type owl:AnnotationProperty .
rdfs:range rdf:PlainLiteral .
rdfs:subPropertyOf rdf:label

:Apartment :label "Apartment"@en,
"Appartement"@nl,

"Avapépropa Qel .

There are a couple of things going on in the above example. We first define the :label
property to be of type owl:AnnotationProperty with a range of rdf:PlainLiteral. This
is a special RDF datatype for natural language text — that is, plain literals can have a
language tag. We furthermore define the :label property to be a subproperty of rdf:label,
and then give three labels to the :Apartment class in English, Dutch, and Greek.

In the general case, annotation properties will have literal values, but they may be

used to relate non-literal resources as well.

Top and Bottom Properties All object properties in OWL2 are a subproperty of
owl:topObjectProperty. This property is defined as the property that relates all indi-
viduals in the ontology. Conversely, owl:bottomObjectProperty is the property that
relates no individuals. Similarly, owl:topDataProperty relates all individuals to any
possible literal value, and owl:bottomDataProperty relates no individual to any literal

value.

Transitive Properties From the discussion of rdfs:subClassOf we know that this re-
lation is transitive; every class is a subclass of all superclasses of its direct super-
class. Clearly there are other relations which are transitive as well, such as :isPartOf

or :isCheaperThan. We can define a property as transitive as follows:

;isPartOf rdf:type owl:ObjectProperty ;

rdf:type owl: TransitiveProperty .

106 Web Ontology Language: OWL2

When is a property composite?

e The fop and bottom properties are all composite.
e Any property that is itself transitive or has an inverse property that is transitive.
e Any property that has a transitive subproperty, or a subproperty the inverse of which is transitive.

e Any property that is the superproperty of a property chain, or is an inverse property of a superproperty of a property
chain.

e Any property that is an equivalent property of one of the above, or is the superproperty of a property that is equivalent
to one of the above.

Composite properties are sometimes called complex roles or non-simple properties.

Restrictions

Composite properties may not occur in the following axioms:
e Qualified and non-qualified cardinality restrictions on classes;
e Self restrictions on classes,
e Disjoint property axioms.

They may furthermore not be assigned the following property types:
e Functional or inverse functional;
o Irreflexive;

o Asymmetric.

Table 4.1: Restrictions on composite properties
Transitive properties are so-called composite properties: they can be said to be com-
posed of multiple steps. For instance, given:

:BaronWayApartment :isPartOf :BaronWayBuilding .

:BaronWayKitchen :isPartOf :BaronWayApartment .

a reasoner will infer :

:BaronWayKitchen :isPartOf :BaronWayBuilding .

This last :isPartOf relation is composed of the two preceding property assertions. Be-
cause of this composition, transitive properties are subject to a number of restrictions

listed in table 4.1.

Symmetric and Asymmetric Properties Some properties, such as :isAdjacentTo,
are symmetric; that is, if a :isAdjacentTo b, the inverse holds as well. In other words,

symmetric properties are equivalent to their inverse (see 4.4.4). For other properties

4.4 The OWL Language 107

we know that this will never be the case. For instance, the :isCheaperThan relation is

asymmetric, since nobody can be defeated by the person they defeated.®

:isAdjacentTo rdf:type owl:ObjectProperty ;

rdf:type owl:SymmetricProperty .

:isCheaperThan rdf:type owl:ObjectProperty ;
rdf:type owl:AsymmetricProperty ;

rdf:type owl:TransitiveProperty .

Functional and Inverse-Functional Properties For some properties we know that
every individual can always have at most one other individual related via that prop-
erty. For instance, :hasNumberOfRooms is a functional property, and the :hasRoom

property is inverse-functional:

:hasNumberOfRooms rdf:type owl:DatatypeProperty ;

rdf:type owl:FunctionalProperty .

:hasRoom rdf:type owl:ObjectProperty ;

rdf:type owl:InverseFunctionalProperty .

Note that if two apartments a1 and as are related via :hasRoom to the same room 7,
this is not necessarily inconsistent: the individuals will simply be inferred to be the

same.

Reflexive and Irreflexive Properties Reflexivity of a property means that every in-
dividual is related via that property to itself. For instance, everything :isPartOf itself.
Irreflexivity, on the other hand, means that no individual is related to itself via that
property. Most properties with disjoint domain and range are actually irreflexive. An

example is the :rents property:

50f course, this is only the case if every pair of persons is only allowed to compete in a single match.

108 Web Ontology Language: OWL2

;isPartOf rdf:type owl:ObjectProperty ;

rdf:type owl:ReflexiveProperty .

:rents rdf:type owl:ObjectProperty ;

rdf:type owl:IrreflexiveProperty .

4.4.4 Property Axioms

In addition to the property types discussed in the preceding section, we can specify
additional characteristics of properties in terms of how they relate to classes and other

properties. Some of these are familiar from RDF Schema; others are completely new.

Domain and Range As we have seen in section 4.4.3, the way in which OWL2 treats
domain and range for properties is exactly the same as in RDF Schema. If more than
one rdfs:range or rdfs:domain is asserted for a property, the actual range or domain is
the intersection of the classes specified in the property axiom.

A common misunderstanding is that domain and range work as a constraint on the
types of individuals that may be related via a property. In fact, domains and ranges
can only be used to determine class membership for these individuals. Given the above
definition of :rents, any two individuals p and a such that p :rents a will be classified

as members of :Person and :Apartment respectively.

Inverse Properties OWL2 allows us to define the inverse of properties. A typical

example is the pair :rents and :isRentedBy. For instance:

:isRentedBy rdf:type owl:ObjectProperty ;

owl:inverseOf :rents .

This means that a reasoner will determine that our two individuals p and m have the re-

lation m :isRentedBy p in addition to p :rents m. Domain and range are inherited from

4.4 The OWL Language 109

the inverse property: :isRentedBy has :Person as range and :Apartment as domain. In

OWL2 DL, only object properties can have an inverse.

Equivalent Properties Properties can also be defined as equivalent. That is, every
two individuals related via a property will always be related via its equivalent, and
vice versa. Equivalence is a convenient mechanism for mapping elements of different

ontologies to each other. For instance:

sisPartOf rdf:type owl:ObjectProperty ;

owl:equivalentProperty dbpedia:partOf .

Disjoint Properties For some properties we know that no two individuals related via
one property can be related via the other: the sets of pairs of individuals for which the

properties can hold are disjoint. Examples are the :rents and :owns properties:

:rents rdf:type owl:ObjectProperty ;
rdfs:domain :Person ;
rdfs:range :Apartment ;

owl:disjointProperty :owns .

Clearly, you cannot rent something you own. Note that under the direct semantics of

OWL2 DL, the owl:ObjectProperty and owl:DatatypeProperty are disjoint as well.

Property Chains A more complex feature of OWL2 is the ability to define
chains of properties. Sometimes it is useful to specify shortcuts along the graph
of properties relating various individuals. For instance, if we know that :Paul
:rents the :BaronWayApartment, and that the :BaronWayApartment :isPartOf the
:BaronWayBuilding, for which the dbpedia:location is dbpedia:Amsterdam, we know
that :Paul must have a :livesln relation with :Amsterdam. In OWL2 we can specify this

using a property chain axiom:

110 Web Ontology Language: OWL2

| :BaronWayApartment I— sisPartOf —»| :BaronWayBuilding

- livesin -~ _
/,/ ~

rents dbpedia-owl:location

/ \ l

/ \

/ \

i 4

:Paul :Amsterdam

Figure 4.2: Property chains (dotted lines are inferred by the reasoner)

:livesIn rdf:type owl:ObjectProperty ;

owl:propertyChainAxiom (:rents :isPartOf :location) .

Figure 4.2 shows how the existence of the :livesIn relation can be inferred from the
apartment example. Note that the property chain axiom does not make the named
property (:livesIn) equivalent to the chain of properties; it is rather a subproperty of the
chain. In OWL2 DL, property chains may only involve object properties, though most
reasoners can handle chains that have a datatype property as last step.

Because of their expressiveness, property chains are subject to a number of restric-
tions. First of all, just like transitive properties, the superproperty of property chains
is composite. This means that they cannot be used in a number of axioms (see table
4.1). Secondly, the property chain may not be recursive: the superproperty of the chain,
its inverse, or one of its subproperties (or their inverse) may not occur in the property
chain axiom. For instance, OWL2 DL does not allow us to extend the :livesn property

in the following way:

:livesIn rdf:type owl:ObjectProperty ;
owl:propertyChainAxiom (:rents :isPartOf dbpedia-owl:location) ;

owl:propertyChainAxiom (:livesin dbpedia-owl:country) .

4.4 The OWL Language 111

even though it would allow us to infer that because :Paul lives in dbpedia:Amsterdam,

he must live in dbpedia:Netherlands as well.

4.4.5 Class Axioms

Classes are defined by asserting a resource to be of type owl:Class. There are two pre-
defined classes that play an important role in reasoning: owl:Thing and owl:Nothing.
The former is the most general class; every possible OWL?2 individual is a member of
this class, and every instance of owl:Class is a subclass of owl: Thing. The owl:Nothing
class is the empty class; it has no members, and every instance of owl:Class is a su-
perclass of that class. Inconsistent classes cannot have any members, and are therefore
equivalent to owl:Nothing. Note that restrictions on owl:Thing have very far-reaching

consequences: they hold for every class and individual in the ontology.

Subclass Relations Subclass relations are defined as in RDF Schema. For example,

we can define a class :LuxuryApartment as follows:

:LuxuryApartment rdf:type owl:Class ;

rdfs:subClassOf :Apartment .

Class Equivalence Equivalence of classes means that every member of a class must
also be a member of the equivalent class, and vice versa. In other words, both classes
cover exactly the same set of individuals. Class equivalence can be defined using an

owl:equivalentClass property:

:Apartment owl:equivalentClass dbpedia:Apartment .

This states that the :Apartment class in our apartment ontology is equivalent to the
dbpedia:Apartment imported from DBPedia. Asserting an equivalence relation be-

tween classes is equivalent to asserting subclass relations in both directions:

112 Web Ontology Language: OWL2

:Apartment rdfs:subClassOf dbpedia:Apartment .

dbpedia:Apartment rdfs:subClassOf :Apartment .

Intermezzo: Punning You may have noticed that the DBPedia apartment definition
comes from the dbpedia namespace instead of from dbpedia-owl. It is not really a
class, but an individual.

Compared to our ontology, DBPedia describes apartments at a higher level of ab-
straction. The classes in the DBPedia ontology are not intended to classify individual
entities (such as apartments in Amsterdam), but rather individual ropics. Treating indi-
viduals as classes is called meta-modeling.

Although the direct semantics of OWL2 do not allow for meta-modeling, OWL?2
DL circumvents this limitation by a syntactic trick called punning, or ‘word play.” This
means that whenever the URI dbpedia:Apartment appears in a class axiom, it is treated
as a class, and when it appears in an individual assertion, it is treated as individual.

Punning is allowed in the following situations: class names, individual names,
and property names may be freely interchanged. However, object property names and

datatype property names may not mix.

Enumerations The most straightforward (though inexpressive and computationally
expensive) way to define a class is by explicitly enumerating all individuals it consists

of:

:BaronWayRooms rdf:type owl:Class;
owl:oneOf (:BaronWayKitchen
:BaronWayBedroom1
:BaronWayBedroom?2
:BaronWayBedroom3
:BaronWayLivingroom

:BaronWayBathroom

L)

4.4 The OWL Language 113

This defines the class of all apartments in Amsterdam. Arguably, this type of class
definition can be very cumbersome if the list of known members is very long, or even
impossible if we do not currently know all individuals. For instance, we may decide to
knock down the wall between :BaronWayBedroom1 and :BaronWayBedroom?2, creat-

ing a new room.

Disjoint Classes Disjointness of classes means that no member of one class can also
be a member of the other class. The sets of individuals described by the classes do not
overlap. We can say that the :LuxuryApartment class is disjoint from :ColdWaterFlat

using the owl:disjointWith property:’
:LuxuryApartment owl:disjointWith :ColdWaterFlat .

This means that no :LuxuryApartment can be a :ColdWaterFlat at the same time.

Complement The complement C' of a class A is the class of all things not belonging
to A. In other words, the union of A and C' is equivalent to owl: Thing. Note that this
means that the complement is always a superclass of the disjoint classes of A. It is
important to keep in mind that complementarity is a very powerful modeling construct

that should be used with care. For instance:

:FurnishedApartment rdfs:subClassOf :Apartment .
:UnFurnishedApartment rdfs:subClassOf :Apartment ;

owl:complementOf :FurnishedApartment .

This states that the class of furnished apartments is the complement of the class of
apartments without furnishing. This is problematic if our ontology contains other

classes besides apartments. For instance, if we additionally state:

7A cold water flat is an apartment which has no running hot water.

114 Web Ontology Language: OWL2

:SemiDetached owl:disjointWith :Apartment .

the :SemiDetached class will be empty. Why? If the class :Apartment covers
both :FurnishedApartment and its complement, :Apartment will be equivalent to
owl: Thing: there cannot be an individual not belonging to a class nor its complement.
If we then additionally introduce a class that is disjoint with :Apartment, this class
is effectively disjoint with owl:Thing. The :SemiDetached class cannot contain any

individuals, and is thereby equivalent to owl:Nothing.

Union and Disjoint Union We often know for some class that it is equivalent to
two or more other classes: every member of the class is a member of at least one of
the classes in the union. This can be specified using the owl:unionOf construct. For

example:

:Apartment rdf:type owl:Class ;
owl:unionOf (:ColdWaterFlat
:LuxuryApartment
:PenthouseApartment
:StudioApartment
:BasementApartment
:FurnishedApartment

:UnFurnishedApartment

In many cases, the member classes of the union are mutually disjoint. Of course,
we can explicitly assert owl:disjointWith relations between each class, but it is more

convenient to state this directly:

:Apartment rdf:type owl:Class;
owl:disjointUnionOf (
:FurnishedApartment

:UnFurnishedApartment) .

4.4 The OWL Language 115

Intersection Similarly, we can state that a class is exactly the intersection of two or
more other classes: every member of the class is a member of each of the classes in the

intersection. For example:

:LuxuryApartment
rdf:type owl:Class ;
owl:intersectionOf (:GoodLocationApartment
:LargeApartment
:NiceViewApartment

:LuxuryBathroomApartment) .

This states that the :LuxuryApartment class is populated by those individual apart-
ments that have a good location, are of large size, have a nice view, and have a luxury

bathroom.

4.4.6 Class Axioms on Properties

OWL2 allows for more fine-grained control of class definitions than we have seen
in the previous sections. We can specify additional class axioms that restrict the set
of individuals that may be considered to be a member of a class by looking at their
properties. This allows us, for instance, to automatically infer class membership. Class
restriction axioms are attached to an owl:Class by relating them to a special type of
anonymous class (an owl:Restriction, in Turtle) that collects all individuals that satisfy

the restriction.

Universal Restrictions A universal restriction on a class C' and property p states that
for every member of C' all values of p belong to a certain class. In other words, the
universal restriction can be used to specify a range for a property that is local to the
restricted class. This type of restriction is built using the owl:allValuesFrom construct.

For example:

116 Web Ontology Language: OWL2

:LuxuryBathroomApartment

rdf:type owl:Class;
rdfs:subClassOf [rdf:type owl:Restriction;
owl:onProperty :hasBathroom ;

owl:allValuesFrom :LuxuryBathroom

This defines the :LuxuryBathroomApartment class as a subclass of the set of indi-
viduals that only have instances of :LuxuryBathroom as value for the :hasBathroom
property. Note that an owl:allValuesFrom restriction merely states that if a member of
the restricted class has a value for the property, then that value must be a member of the
specified class. The restriction does not require the property to have any value at all:
in that case, the restriction is trivially satisfied. In our apartment example, the above
definition does not require that a luxury bathroom apartment have a bathroom at all!
Universal restrictions can also be used with datatype properties — for instance, to
state that the value of a property must be of a certain type or fall within a certain data

range (see below).

Existential Restrictions An existential restriction on a class C' and property p states
that for every member of C' there exists at least some value for p that belongs to a certain

class. This type of restriction is specified using an owl:someValuesFrom keyword:

:LuxuryBathroomApartment

rdf:type owl:Class;
rdfs:subClassOf [rdf:type owl:Restriction;
owl:onProperty :hasBathroom ;

owl:someValuesFrom :LuxuryBathroom

Necessary and Sufficient Conditions Instead of using the rdfs:subClassOf property

to relate our class to the restriction, we could also have used an owl:equivalentClass

4.4 The OWL Language 117

property to state that the restricted class is exactly the class described by the restric-
tion. The rdfs:subClassOf restriction states necessary conditions for class membership,
while the owl:equivalentClass restriction states necessary and sufficient conditions.

In general, a reasoner can only directly infer class membership for individuals
based on both necessary and sufficient conditions. For instance, the existential re-
striction above will not make a reasoner conclude that every individual that has a
:hasBathroom relation with an individual of type :LuxuryBathroom must be an in-
stance of :LuxuryBathroomApartment. The apartment is only a subclass of the re-
striction, and we do not have enough information to determine whether the individual
is also a member of the class itself. If we make the class equivalent to the class spec-
ified by the restriction, it is clear that any individual that satisfies the restriction must
also be a member of the class.

However, in both cases, if we explicitly assert an individual to be an instance of the
:LuxuryBathroomApartment class, the reasoner will infer that there is at least some
(unknown) individual of type :LuxuryBathroom as value for the :hasBathroom prop-

erty.

Value Restrictions Value restrictions come in handy when we want to define a class
based on relations with known individuals, or specific values for datatype properties.

For example, we can define the class of all apartments in Amsterdam:

:AmsterdamApartment
rdf:type owl:Class;
owl:equivalentClass [rdf:type owl:Restriction;

owl:onProperty dbpedia-owl:location ;

owl:hasValue dbpedia:Amsterdam

118 Web Ontology Language: OWL2

Cardinality Restrictions A cardinality restriction constrains the number of values a
certain property may have for a class. If we additionally specify the class these values

need to belong to, the restriction is said to be qualified. For example:

:StudioApartment
rdf:type owl:Class;
rdfs:subClassOf [rdf:type owl:Restriction;
owl:onProperty :hasRoom ;

owl:cardinality "1"" ~xsd:integer

This specifies that a studio apartment can have exactly one value for the :hasRoom
property. We can turn this into a qualified cardinality restriction by stating that the
cardinality holds for members of the :LivingRoom, :Kitchen, and :Bedroom classes

only (studios do tend to have separate bathrooms):

:StudioApartment

rdf:type owl:Class;
rdfs:subClassOf [rdf:type owl:Restriction;
owl:onProperty sisPlayedBy ;

owl:qualifiedCardinality "1" " ~xsd:integer ;

owl:onClass [owl:unionOf (:LivingRoom :Kitchen :Bedroom)]

Note that the qualified restriction still allows for the members of the restricted class to
have additional values for the property, provided that these belong to the complement
of the qualifier class. A qualified cardinality restriction on owl: Thing is equivalent to a
restriction without qualifier. Table 4.2 summarizes the different cardinality restrictions

allowed in OWL2.

Data Range Restrictions and Datatypes Universal and existential restrictions on

datatype properties allow members of a class to have any value from the specified

4.4 The OWL Language 119

Type of restriction Qualified Not qualified

Exact cardinality owl:qualifiedCardinality owl:cardinality
Minimum cardinality | owl:qualifiedMinCardinality owl:minCardinality
Maximum cardinality | owl:qualifiedMaxCardinality | owl:maxCardinality

Table 4.2: Cardinality restrictions in OWL2

datatype as value for the property. Sometimes we need more precise definitions to
define, for instance, the class of adults who can rent apartments, or the minimum size
of apartments. In OWL2, we can specify restrictions on the range of values allowed for

a property:

:Adult rdfs:subClassOf dbpedia:Person ;
rdfs:subClassOf [rdf:type owl:Restriction ;
owl:onProperty :hasAge ;
owl:someValuesFrom
[rdf:type rdfs:Datatype ;
owl:onDatatype xsd:integer ;
owl:withRestrictions (

[xsd:minInclusive "18" " ~xsd:integer]

)

This defines :Adult as the subclass of persons that have a value for the :hasAge that
falls within the range of integers equal to or larger than 18. You can see that the data
range is defined as an anonymous class of type rdfs:Datatype. We could also have

introduced a new named datatype that we could reuse throughout the ontology:

:AdultAge rdf:type rdfs:Datatype ;
owl:onDatatype xsd:integer ;
owl:withRestrictions (

[xsd:minInclusive "18" "~ “xsd:integer |

).

120 Web Ontology Language: OWL2

:Adult rdf:type owl:Class ;
rdfs:subClassOf dbpedia:Person ;
rdfs:subClassOf [rdf:type owl:Restriction ;
owl:onProperty :hasAge ;

owl:someValuesFrom :AdultAge

OWL2 allows the use of XML Schema to define datatypes. However, only
datatypes defined using XML Schema facets can be used in restrictions. See suggested

reading for more information.

Self Restrictions We all know that good apartments will sell themselves; if it is in
a good location, with a nice view, and has a proper size, you do not need to spend
much time redecorating it for it to sell well. In OWL2 we can express this using a self

restriction. For instance:

ex:GoodApartment
rdf:type owl:Class ;
rdfs:subClassOf [rdf:type owl:Restriction ;

owl:onProperty ex:sells ;

NAanA

owl:hasSelf "true xsd:boolean ;

This states that every instance of ex:GoodApartment is related to itself with a ex:sells

property. Clearly, OWL2 DL does not allow self restrictions on datatype properties.

Keys Databases typically use keys to identify records in a table. These keys are
not necessarily URIs, and it can be difficult to come up with an elegant conversion
scheme. OWL2 allows us to indicate that for certain classes (read: tables) the value

of a specific datatype property (or combination of properties) should be regarded as a

4.4 The OWL Language 121

unique identifier. For example, the combination of postcode and street address number

will provide a unique identifier for any dwelling in the Netherlands:

:postcode rdf:type owl:DatatypeProperty .

:addressNumber rdf:type owl:DatatypeProperty .

:Dwelling
rdf:type owl:Class ;

owl:hasKey (:postcode :addressNumber) .

Note that the key mechanism allows us to define inverse functional datatype properties
that are local to a class. Any two individuals of type ex:Dwelling that have the same
value for the :postcode and :addressNumber must be considered to be the same. Un-
fortunately OWL2 DL does not allow us to specify global inverse functional datatype

properties because of computational consequences.

4.4.7 Individual Facts

Now that we have a general idea of how we define properties and classes in OWL2,
we turn our attention to the individual entities governed by our model. In many cases
we already have a lot of knowledge about these entities and only need class axioms to

infer extra information. Statements about individuals are usually called assertions.

Class and Property Assertions Class membership and property assertions in OWL2

are stated in the same way as in RDF Schema:

:Apartment rdf:type owl:Class .

:BaronWayApartment rdf:type :Apartment ;
:hasNumberOfRooms "4" "~ ~xsd:integer ;

:isRentedBy :Paul .

122 Web Ontology Language: OWL2

This introduces :BaronWayApartment as an instance of the class :Apartment. It has
four rooms and is rented by :Paul. Remember that under the direct semantics of OWL2
DL, the rdf:type relations may hold only between two strictly separated levels: that of

classes, and that of individuals.®?

Identity Assertions Because OWL2 has the open world assumption, we can never
assume that two individuals with different URIs must be different entities. We might be
dealing with a single individual that has multiple names. Although we have seen that
in some cases we can infer identity relations automatically, it is often more convenient

to state them explicitly:

:BaronWayApartment owl:sameAs :PaulsApartment ;

owl:differentFrom :FranksApartment .

The list of different individuals can easily grow quite long. For instance, a small city
will already contain hundreds of apartments for which we would need to assert pairwise
owl:differentFrom relations. Fortunately, we can state this a bit more elegantly using

the owl:AllDifferent construct:

_:x rdfitype owl:AllDifferent ;

owl:members (:FranksApartment :PaulsApartment) .

Negative Assertions Sometimes we know something not to be the case. Making
this knowledge explicit can be very valuable in an open world: ruling out possi-
bilities often allows us to infer new knowledge. For instance, the knowledge that
:BaronWayApartment is not rented by :Frank may allow us to infer that it is not

:FranksApartment:

_x rdfitype owl:NegativePropertyAssertion ;

owl:sourcelndividual :BaronWayApartment ;

8See also the discussion on punning in section 4.4.5.

4.5 OWL2 Profiles 123

owl:assertionProperty :isRentedBy ;

owl:targetindividual :Frank .

If the owl:assertionProperty points to datatype property, we use owl:targetValue in-
stead of owl:targetIndividual.
Note that if we know that an individual is not a member of a certain class, we can

also state this explicitly by asserting it to be a member of that class’s complement:

:BaronWayApartment rdf:type [owl:complementOf :LuxuryApartment | .

4.5 OWL2 Profiles

The OWL2 specification includes a number of so-called profiles: some of these are
well-known subsets of the OWL2 DL specification while others are more expressive
but do not have the full semantics of OWL2 Full. The motivation for providing these
profiles is that many existing ontologies tend to use only a particular subset of the lan-
guage constructs available in DL. A significant increase of reasoner performance can
be achieved through reasoning using a less expressive language. A standard library of
logical profiles with a particularly likeable tradeoff between expressiveness and com-
putational complexity can be very useful in practice.

In particular the profiles are:

e restricted by syntax. The semantics of a profile’s syntax is provided by the OWL2

DL specification.

e defined by logics that can handle at least some interesting inference service in

polynomial time with respect to either:

— the number of facts in the ontology, or

— the size of the ontology as a whole.

124 Web Ontology Language: OWL2

This section gives a brief overview of the profiles defined in OWL2 and their typical

application areas.

OWL2 EL. The EL profile is an extension of the £L£ description logic. Its primary
strength lies in the ability to reason in polynomial time on ontologies with a large
number of class axioms, and it was designed to cover the expressive power of sev-
eral existing large-scale ontologies in the health care and life sciences domain (e.g.,
SNOMED-CT, Gene Ontology, and GALEN).?

OWL2 EL’s primary strength is in dealing with conjunctions and existential re-
strictions. It is lightweight and supports sound and complete reasoning in poly-
nomial time. The most significant difference with OWL2 DL is that it drops the
@powl:allValuesFrom restriction, though it does support @prdfs:range restrictions on

properties, which can have a similar effect.

OWL2 QL Reasoners developed for OWL2 DL and OWL2 EL are optimized for
reasoning on class axioms, and are relatively inefficient when dealing with ontolo-
gies that have relatively uncomplicated class definitions but contain a large number of
individual assertions. The QL profile of OWL2 was developed to efficiently handle
query answering on such ontologies, and adopts technologies from relational database
management. It is based on the DL-Lite description logic and extended with more ex-
pressive features such as the property inclusion axioms (@powl:subPropertyOf) and

functional and inverse-functional object properties.

OWL2 RL. The OWL2 RL profile is based on so-called Description Logic Programs
and enables interaction between description logics and rules: it is the largest syntactic

fragment of OWL2 DL that is implementable using rules. This is a very important

9See http://www.snomed.org, http://www.geneontology.org, and http://www.openclinical.org/
prj galen.html respectively.

4.6 Summary 125

feature, as rules can efficiently be run in parallel, allowing for scalable reasoning im-
plementations.

OWL2 RL differs from the QL and EL profiles in that it provides a bridge between
the DL perspective and that of OWL Full: rule reasoners can easily disregard the re-
strictions of OWL DL (such as the separation between classes and individuals). This
means that rule implementations of OWL2 RL can implement subsets of OWL Full.
Many of the most scalable reasoners for Semantic Web languages implement OWL2
RL or a very similar language called pD* or OWL-Horst. The set of rules that have to

be implemented is published as part of the OWL2 RL specification.

4.6 Summary

e OWL2 extends RDF and RDF Schema with a number of very expressive lan-
guage features, such as cardinality constraints, class equivalence, intersection,

and disjunction.

e Formal semantics and reasoning support is provided through the correspondence

of OWL with logics.

e OWL2 comes in two flavors. OWL2 DL is a language that imposes some re-
strictions on the combination of OWL2 and RDFS language elements to retain
decidability. OWL2 Full is a fully compatible extension of RDF Schema with all

OWL2 language features, but it is known to be undecidable.

e Three profiles, OWL2 EL, OWL2 QL, and OWL2 RL, are syntactic subsets
that have desirable computational properties. In particular, OWL2 RL is im-
plementable using rule-based technology and has become the de facto standard

for expressive reasoning on the Semantic Web.

e OWL2 has four standard syntaxes, RDF/XML, Manchester Syntax, OWL/XML,

and the Functional Style syntax.

126 Web Ontology Language: OWL2

Suggested Reading
Here are the main entry points for learning more about the OWL2 language:

e Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fokoue,
and Carsten Lutz, eds. OWL 2 Web Ontology Language Profiles.

www.w3.org/ TR/owl2-profiles/.

e Boris Motik, Peter F. Patel-Schneider, and Bernardo Cuenca Grau, eds. OWL 2
Web Ontology Language Direct Semantics.

www.w3.org/TR/owl2-direct-semantics/.

e Boris Motik, Peter F. Patel-Schneider, and Bijan Parsia, eds. OWL 2 Structural
Specification and Functional-Style Syntax.

www.w3.org/TR/owl2-syntax/.

e Michael Schneider, ed. OWL 2 Web Ontology Language RDF-Based Semantics.

www.w3.org/TR/owl2-rdf-based-semantics/.

e W3C OWL Working Group, eds. OWL 2 Web Ontology Language Document
Overview.

www.w3.org/TR/owl2-overview/.

Primers and tutorials about OWL2:

e Pascal Hitzler, Markus Krotzsch, Bijan Parsia, Peter F. Patel-Schneider, and Se-
bastian Rudolph. OWL 2 Web Ontology Language Primer.

www.w3.org/TR/owl2-primer/.

e Matthew Horridge. The Manchester Pizza Tutorial.

owl.cs.manchester.ac.uk/tutorials/protegeowltutorial /.

Key publications about the logics underlying OWL2:

4.6 Summary 127

e Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL Envelope.

Proceedings of IJCAI 2005: 364-369.

e I. Horrocks, O. Kutz, and U. Sattler. The Even More Irresistible SROIQ. In
Proceedings of the 10th International Conference of Knowledge Representation

and Reasoning (KR-2006, Lake District UK), 2006.

e Herman J. ter Horst. Combining RDF and Part of OWL with Rules: Semantics,
Decidability, Complexity. International Semantic Web Conference 2005, 668—

684.

A very incomplete list of software and reasoners for developing with OWL (at the time

of writing):

e CEL, an OWL reasoner optimized for the OWL2 EL profile, developed at the

University of Dresden. See http://lat.inf.tu-dresden.de/systems/cel/.

e HermiT, a fast OWL reasoner for complex ontologies, developed at Oxford Uni-

versity. See http://www.hermit-reasoner.com.

e OWLIM, a fast OWL reasoner for the OWL2 RL profile, developed by Ontotext.

See http://www.ontotext.com /owlim.

e Pellet, one of the most feature-rich OWL reasoners, developed by Clark & Parsia.

See http://pellet.owldl.com.

e Protégé, the de facto editing environment for OWL ontologies, developed by
Stanford University. It has several reasoners built in. See http://protege.

stanford.edu.

e TopBraid Composer, an RDF-based editing environment for OWL ontologies,
developed by TopQuadrant. It supports SPARQL, connection to triple stores, and
inferencing using the OWLIM reasoner. See http://www.topquadrant.com/

products/ TB__Composer.html.

128 Web Ontology Language: OWL2

e WebPIE, a massively scalable inference engine for the ter Horst fragment of
OWL (roughly OWL2 RL), developed by VU University Amsterdam. See http:

//www.few.vu.nl/~jui200/webpie.html.

Exercises and Projects

1. Read the online specification of OWL.
2. Give three different ways of stating that two classes are disjoint.

3. Express the fact that all mathematics courses are taught by David Billington only
(no other lecturer may be involved). Also express the fact that the mathematics
courses are exactly the courses taught by David Billington. Is the difference

clear?

4. Strictly speaking, the notion of owl:SymmetricProperty was not needed in OWL
because it could have been expressed in terms of other language primitives. Ex-

plain how this can be done. (Hint: Consider the inverse, too.)

5. Similar question for owl:FunctionalProperty and owl:Negative
PropertyAssertion. Show how they can be expressed using other OWL

language constructions.

6. Determine in general which features of OWL are necessary and which are only

convenient but can be simulated by other modeling primitives.

7. Explain the relationship between the concepts FunctionalProperty,

InverseFunctionalProperty, and InverseOf.
8. Explain why it is necessary to declare owl:Class as a subclass of rdfs:Class.

9. In section 2.7, we presented an axiomatic semantics for RDF. A similar ax-

iomatic semantics can be developed for OWL. Define the axiomatic semantics

4.6 Summary 129

10.

1.

12.

13.

14.

15.

of owl:intersectionOf.
Define the axiomatic semantics of owl:inverseOf.

In this exercise you are asked to develop an axiomatic semantics for cardinality

restrictions.

(a) Define noRepeatsList. L is a “no repeats list” if there is not an element that
occurs in L more than once. The concept is not part of the OWL language

but will be used to count the elements for cardinality restrictions.

(b) Define owl:minCardinality and owl:maxCardinality as properties with do-

main owl:Restriction and range :NonNegativelnteger.

(c) Give an axiom that captures the meaning of minCardinality:
If onProperty(R, P) and minCardinality(R,n) then z is an instance of
R if, and only if, there is a “no repeats list” L of length > n, such that

P(x,y)forally € L.
(d) Express the meaning of owl: maxCardinality in a similar way.
Look at some ontologies at http://www.co-ode.org/ontologies/.
Write your own ontologies in OWL2.

OWL2 is the latest version of the OWL language. Read the pages about the pre-
vious version (see http://www.w3.0rg/2004/OWL/) and some of the example
ontologies. Compare the old OWL language to OWL2, paying attention both to

commonalities and differences.

Compare the online documentation on OWL2 to those for the first version of

OWL.

Chapter 5

Logic and Inference: Rules

5.1 Introduction

5.1.1 Logic and Rules

From an abstract viewpoint, the subjects of chapters 2 and 4 were related to the repre-
sentation of knowledge: knowledge about the content of web resources, and knowledge
about the concepts of a domain of discourse and their relationships (ontology).
Knowledge representation had been studied long before the emergence of the World
Wide Web, in the area of artificial intelligence and, before that, in philosophy. In fact,
it can be traced back to ancient Greece; Aristotle is considered to be the father of logic.
Logic is still the foundation of knowledge representation, particularly in the form of
predicate logic (also known as first-order logic). Here we list a few reasons for the

popularity and importance of logic:

e It provides a high-level language in which knowledge can be expressed in a trans-

parent way. And it has a high expressive power.

e It has a well-understood formal semantics, which assigns an unambiguous mean-

131

132 Logic and Inference: Rules

ing to logical statements.

e There is a precise notion of logical consequence, which determines whether a
statement follows semantically from a set of other statements (premises). In
fact, the primary original motivation of logic was the study of objective laws of

logical consequence.

e There exist proof systems that can automatically derive statements syntactically

from a set of premises.

e There exist proof systems for which semantic logical consequence coincides with
syntactic derivation within the proof system. Proof systems should be sound
(all derived statements follow semantically from the premises) and complete (all

logical consequences of the premises can be derived in the proof system).

e Predicate logic is unique in the sense that sound and complete proof systems
do exist. More expressive logics (higher-order logics) do not have such proof

systems.

e Because of the existence of proof systems, it is possible to trace the proof that
leads to a logical consequence. In this sense, the logic can provide explanations

for answers.

The languages of RDF and OWL2 profiles (other than OWL2 Full) can be viewed as
specializations of predicate logic.

One justification for the existence of such specialized languages is that they pro-
vide a syntax that fits well with the intended use (in our case, web languages based on
tags). The other major justification is that they define reasonable subsets of logic. As
already mentioned, there is a trade-off between the expressive power and the computa-
tional complexity of certain logics: the more expressive the language, the less efficient
the corresponding proof systems. As we stated, most OWL variants correspond to a

description logic, a subset of predicate logic for which efficient proof systems exist.

5.1 Introduction 133

Another subset of predicate logic with efficient proof systems comprises the so-
called rule systems (also known as Horn logic or definite logic programs). A rule has

the form
Al, .. An — B

where A; and B are atomic formulas. In fact, there are two intuitive ways of reading

such a rule:

1. If Ay, ..., A, are known to be true, then B is also true. Rules with this interpre-

tation are referred to as deductive rules.'

2. If the conditions Ay, ..., A, are true, then carry out the action B. Rules with

this interpretation are referred to as reactive rules.

Both views have important applications. However, in this chapter we take the deductive
approach. We study the language and possible queries that one can ask, as well as
appropriate answers. Also, we outline the workings of a proof mechanism that can
return such answers.

It is interesting to note that description logics and Horn logic are orthogonal in the
sense that neither of them is a subset of the other. For example, it is impossible to define
the class of happy spouses as those who are married to their best friend in description

logics. But this piece of knowledge can easily be represented using rules:
married(X,Y), bestFriend(X,Y) — happySpouse(X)

On the other hand, rules cannot (in the general case) assert (a) negation/complement of
classes; (b) disjunctive/union information (for instance, that a person is either a man or
a woman); or (c¢) existential quantification (for instance, that all persons have a father).
In contrast, OWL is able to express the complement and union of classes and certain

forms of existential quantification.

IThere are two ways, in principle, of applying deductive rules: from the body (A1,..., Ay) to the
conclusion (B) (forward chaining), and from the conclusion (goal) to the body (backward reasoning).

134 Logic and Inference: Rules

Then we turn our attention to another kind of rules. We give a simple example.
Suppose an online vendor wants to give a special discount if it is a customer’s birthday.

An easy way to represent this business policy with rules is as follows:

R1 : If birthday, then special discount.

R2 : If not birthday, then not special discount.

This solution works properly in cases where the birthday is known. But imagine a
customer who refuses to provide his birthday because of privacy concerns. In such a
case, the preceding rules cannot be applied because their premises are not known. To

capture this situation we need to write something like

R1 : If birthday, then special discount.

R2' : If birthday is not known, then not special discount.

However, the premise of rule R2’ is not within the expressive power of predicate logic.
Thus we need a new kind of rule system. We note that the solution with rules R1 and
R?2 works in cases where we have complete information about the situation (for exam-
ple, either birthday or not birthday). The new kind of rule system will find application
in cases where the available information is incomplete.

Predicate logic and its special cases are monotonic in the following sense. If a con-
clusion can be drawn, it remains valid even if new knowledge becomes available. But
if rule R2’ is applied to derive “not special discount,” then this conclusion may become
invalid if the customer’s birthday becomes known at a later stage and it happens to co-
incide with the purchase date. This behaviour is nonmonotonic because the addition of
new information leads to a loss of a consequence. Thus we talk of nonmonotonic rules
to distinguish them from monotonic rules (which are a special case of predicate logic).

In this chapter we discuss both monotonic and nonmonotonic rules.

5.1 Introduction 135

5.1.2 Rules on the Semantic Web

Rule technology has been around for decades, has found extensive use in practice, and
has reached significant maturity. And this deployment has led to a broad variety of
approaches. As a result, it is far more difficult to standardize this area in the context of
the (semantic) web. A W3C working group has developed the Rule Interchange Format
(RIF) standard. It is important to understand how it is different from RDF and OWL:
whereas the latter are languages meant for directly representing knowledge, RIF was
designed primarily for the exchange of rules across different applications. For example,
an online store might wish to make its pricing, refund, and privacy policies, which are
expressed using rules, accessible to intelligent agents. The Semantic Web approach is
to express the knowledge in a machine-accessible way using one of the web languages
we have already discussed.

Due to the underlying aim of serving as an interchange format among different rule
systems, RIF combines many of their features, and is quite complex. Therefore there
are some doubts as to whether it will really be used widely as the primary language for
expressing knowledge. Indeed, those wishing to develop rule systems for the Semantic

Web have various alternatives:

e Rules over RDF can be expressed in an elegant way using SPARQL constructs;

one recent proposal in this direction is SPIN.?

e Those wishing to use rules in the presence of rich semantic structures can use

SWRL, which couples OWL DL functionalities with certain types of rules.

e Those who wish to model in terms of OWL but use rule technology for imple-

mentation purposes may use OWL2 RL.

This plurality of approaches is the reason why this chapter looks very different from

the previous ones, which were based on one, or a family of, very stable and widely

ZHowever, SPARQL is not a rule language, as basically it carries out one application of a rule. A rule
system has to be developed on top of, say, SPIN.

136

Logic and Inference: Rules

adopted standard(s). RIF is a step in this direction, but not yet at the same level of

community agreement and adoption. Therefore, the chapter presents ideas at a generic

level, and presents a number of concrete approaches.

Chapter Overview

Readers who are not comfortable with the notation and basic notions of predicate logic

are advised to read some introductory chapters of logic books, like those listed at the

end of this chapter. Alternatively, they may skip parts of sections 5.3 and 5.4.

Section 5.2 provides an example using monotonic rules (that is, of the subset of

predicate logic called Horn logic).

Sections 5.3 and 5.4 describe the syntax and semantics of Horn logic.

Section 5.5 discusses the relationship between OWL2 RL and rules.

5.6 presents the family of RIF dialects, with a focus on the logic-based languages.

Section 5.7 describes SWRL as a way of combining rules with description logics.

Section 5.8 briefly describes how rules can be modeled using SPARQL con-

structs.

Section 5.9 describes the syntax of nonmonotonic rules, and section 5.10

presents an example of nonmonotonic rules.

Finally, section 5.11 briefly describes RuleML, an ongoing activity for rule
markup on the web with an open and experimental agenda that may feed into

new standards in the future.

5.2 Example of Monotonic Rules: Family Relationships 137

5.2 Example of Monotonic Rules: Family
Relationships

Imagine a database of facts about some family relationships. Suppose that the database

contains facts about the following base predicates:

mother(X,Y) X is the mother of Y
father(X,Y) X is the father of Y
male(X) X is male
female(X) X is female

Then we can infer further relationships using appropriate rules. First, we can define a

predicate parent: a parent is either a father or a mother.

mother(X,Y) — parent(X,Y)

father(X,Y) — parent(X,Y)

Then we can define a brother to be a male person sharing a parent:

male(X), parent(P, X), parent(P,Y), notSame(X,Y) —
brother(X,Y)

The predicate notSame denotes inequality; we assume that such facts are kept in a
database. Of course, every practical logical system offers convenient ways of express-
ing equality and inequality, but we chose the abstract solution to keep the discussion
general.

Similarly, sister is defined as follows:

female(X), parent(P, X), parent(P,Y), notSame(X,Y) —
sister(X,Y)

138 Logic and Inference: Rules

An uncle is a brother of a parent:

brother(X, P),parent(P,Y) — uncle(X,Y)
A grandmother is the mother of a parent:

mother(X, P), parent(P,Y) — grandmother(X,Y)
An ancestor is either a parent or an ancestor of a parent:

parent(X,Y) — ancestor(X,Y)

ancestor(X, P), parent(P,Y) — ancestor(X,Y)

5.3 Monotonic Rules: Syntax

Let us consider a simple rule stating that all loyal customers with ages over 60 are

entitled to a special discount:
loyalCustomer(X), age(X) > 60 — discount(X)
We distinguish some ingredients of rules:

e variables, which are placeholders for values: X
e constants, which denote fixed values: 60
e predicates, which relate objects: loyalCustomer, >

e function symbols, which denote a value, when applied to certain arguments: age

In case no function symbols are used, we discuss function-free (Horn) logic.

5.3 Monotonic Rules: Syntax 139

5.3.1 Rules

A rule has the form

Bl, ey Bn — A
where A, By, ..., B, are atomic formulas. A is the head of the rule, and By, ..., B,
are the premises of the rule. The set { By, ..., B, } is referred to as the body of the rule.

The commas in the rule body are read conjunctively: if B; and By and ... and B,,
are true, then A is also true (or equivalently, to prove A it is sufficient to prove all of
By,...,By).

Note that variables may occur in A, By, ..., B,,. For example,

loyalCustomer(X), age(X) > 60 — discount(X)

This rule is applied for any customer: if a customer happens to be loyal and over 60,
then she gets the discount. In other words, the variable X is implicitly universally quan-
tified (using V.X). In general, all variables occurring in a rule are implicitly universally
quantified.

In summary, a rule r

Bl,...,Bn—>A

is interpreted as the following formula, denoted by pl(r):

VX1 .. VXi((BiA...ABy) — A)

or equivalently,

VX1 ... VXe(AV =B V...V ~By,)

where X1, ..., X are all variables occurring in A, By, ..., B,.

140 Logic and Inference: Rules

5.3.2 Facts

A fact is an atomic formula, such as loyalCustomer(a345678), which says that the
customer with ID a345678 is loyal. The variables of a fact are implicitly universally

quantified.

5.3.3 Logic Programs

A logic program P is a finite set of facts and rules. Its predicate logic translation pl(P)

is the set of all predicate logic interpretations of rules and facts in P.

5.34 Goals
A goal denotes a query GG asked to a logic program. It has the form
Bl7 A ,Bn —

If n = 0 we have the empty goal O.
Our next task is to interpret goals in predicate logic. Using the ideas we have
developed so far (interpretations of commas as conjunction, implicit universal quantifi-

cation), we get the following interpretation:
VX1.. . VXi(-B1V...V—B,)

This formula is the same as pl(r), with the only difference that the rule head A is
omitted.?

An equivalent representation in predicate logic is
-3X;...3Xk(B1A...ABy)

where X1, ..., X}, are all variables occurring in By, . .., B,,. Let us briefly explain this

formula. Suppose we know

3Note that the formula is equivalent to VX1 ...VXy(false V =B1 V ...V —By), so a missing rule
head can be thought of as a contradiction false.

5.4 Monotonic Rules: Semantics 141

p(a)
and we have the goal
p(X) =

Actually, we want to know whether there is a value for which p is true. We expect a
positive answer because of the fact p(a). Thus p(X) is existentially quantified. But
then why do we negate the formula? The explanation is that we use a proof technique
from mathematics called proof by contradiction. This technique proves that a statement
A follows from a statement B by assuming that A is false and deriving a contradiction
when combined with B. Then A must follow from B.

In logic programming we prove that a goal can be answered positively by negating
the goal and proving that we get a contradiction using the logic program. For example,

given the logic program
p(a)

and the goal
—-3IXp(X)

we get a logical contradiction: the second formula says that no element has the property
p, but the first formula says that the value of a does have the property p. Thus 3 X p(X)

follows from p(a).

5.4 Monotonic Rules: Semantics

5.4.1 Predicate Logic Semantics

One way of answering a query is to use the predicate logic interpretation of rules, facts,
and queries, and to make use of the well-known semantics of predicate logic. To be

more precise, given a logic program P and a query

142 Logic and Inference: Rules

Bl7 A ,Bn —
with the variables X1, ..., X, we answer positively if, and only if,
pl(P) E3X;...3Xp(B1 A... ABy) (1)

or equivalently, if

pl(P)U{=3X;...3X%(B1 A...A By,)} is unsatisfiable 2)

In other words, we give a positive answer if the predicate logic representation of the
program P, together with the predicate logic interpretation of the query, is unsatisfiable
(a contradiction).

The formal definition of the semantic concepts of predicate logic is found in the
literature. Here we just give an informal presentation. The components of the logical
language (signature) may have any meaning we like. A predicate logic model, A,

assigns a certain meaning. In particular, it consists of

a domain dom(A), a nonempty set of objects about which the formulas make

statements,
e an element from the domain for each constant,
e a concrete function on dom(.A) for every function symbol,

e a concrete relation on dom(.A) for every predicate.

When the symbol = is used to denote equality (i.e., its interpretation is fixed), we talk
of Horn logic with equality. The meanings of the logical connectives —, V, A, —,V, 3
are defined according to their intuitive meaning: not, or, and, implies, for all, there is.
This way we define when a formula is true in a model A, denoted as A = .

A formula ¢ follows from a set M of formulas if ¢ is true in all models .4 in which

M is true (that is, all formulas in M are true in A).

5.4 Monotonic Rules: Semantics 143

Now we are able to explain (1) and (2). Regardless of how we interpret the con-
stants, predicates, and function symbols occurring in P and the query, once the predi-
cate logic interpretation of P is true, 3X; ...3X;(B1 A ... A By,) must be true, too.
That is, there are values for the variables X1, ..., X} such that all atomic formulas B;
become true.

For example, suppose P is the program

p(a)

p(X) = ¢(X)
Consider the query
q(X) —

Clearly, g(a) follows from pl(P). Therefore, 3X¢(X) follows from pl(P), thus
pl(P)U{—=3X¢(X)} is unsatisfiable, and we give a positive answer. But if we consider

the query
q(b) —

then we must give a negative answer because ¢(b) does not follow from pl(P).

5.4.2 Least Herbrand Model Semantics

The other kind of semantics for logic programs, least Herbrand model semantics, re-
quires more technical treatment, and is described in standard logic textbooks (see sug-

gested reading).

5.4.3 Ground and Parameterized Witnesses

So far we have focused on yes/no answers to queries. However, such answers are not

necessarily optimal. Suppose that we have the fact

144 Logic and Inference: Rules

p(a)
and the query
p(X) =

The answer yes is correct but not satisfactory. It resembles the joke where you are
asked, “Do you know what time it is?”” and you look at your watch and answer “yes.”

In our example, the appropriate answer is a substitution

{X/a}

which gives an instantiation for X, making the answer positive. The constant a is

called a ground witness. Given the facts

there are two ground witnesses to the same query: a and b. Or equivalently, we should

return the substitutions:

{X/a}

{X/b}
While valuable, ground witnesses are not always the optimal answer. Consider the
logic program

add(X,0,X)

add(X,Y,Z) — add(X,s(Y), s(2))
This program computes addition, if we read s as the “successor function,” which returns

as value the value of its argument plus 1. The third argument of add computes the sum

of its first two arguments. Consider the query

5.5 OWL2 RL: Description Logic Meets Rules 145

add(X,s%(0),Z) —
Possible ground witnesses are determined by the substitutions

{X/0,2/5°(0)}
{X/5(0),2/s°(0)}
{X/s(s(0)), 2/5'°(0)}

However, the parameterized witness Z = s%(X) is the most general way to witness

the existential query
IX3Z add(X, s%(0), Z)

since it represents the fact that add(X, s%(0), Z) is true whenever the value of Z equals
the value of X plus 8.
The computation of most general witnesses is the primary aim of a proof system,

called SLD resolution, the presentation of which is beyond the scope of this book.

5.5 OWL2 RL: Description Logic Meets Rules

As stated at the beginning of this chapter, Horn logic and description logics are or-
thogonal. In attempting to achieve their integration into one framework, the simplest
approach is to consider the intersection of both logics, that is, the part of one language
that can be translated in a semantics-preserving way to the other language, and vice
versa. In essence, OWL2 RL seeks to capture this fragment of OWL. The advantages

of this approach include:

e From the modeler’s perspective, there is freedom to use either OWL or rules
(and associated tools and methodologies) for modeling purposes, depending on

the modeler’s experience and preferences.

146 Logic and Inference: Rules

e From the implementation perspective, either description logic reasoners or de-
ductive rule systems can be used. Thus it is possible to model using one frame-
work, such as OWL, and to use a reasoning engine from the other framework,
such as rules. This feature provides extra flexibility and ensures interoperability

with a variety of tools.

In the remainder of this section we show how many constructs of RDF Schema and
OWL2 RL can be expressed in Horn logic, and also discuss some constructs that in
general cannot be expressed. This discussion focuses on the basic constructs highlight-
ing the connections and differences between rules and description logics. For more
information on OWL2 RL constructs and their relation to logic, please refer to section
5.6.4 and the suggested reading at the end of this chapter.

We begin with RDF and RDF Schema. A triple of the form (a, P, b) in RDF can be

expressed as a fact
P(a,b)

Similarly, an instance declaration of the form type(a, C'), stating that « is an instance

of class C', can be expressed as
C(a)

The fact that C' is a subclass of D is easily expressed as
C(X)— D(X)

and similarly for subproperty. Finally, domain and range restrictions can also be ex-
pressed in Horn logic. For example, the following rule states that C' is the domain of

property P:
P(X,Y) = C(X)

Now we turn to OWL. equivalentClass(C, D) can be expressed by the pair of rules

5.5 OWL2 RL: Description Logic Meets Rules 147

C(X)— D(X)
D(X) — C(X)

and similarly for equivalent Property. Transitivity of a property P is easily expressed

as
P(X,Y),P(Y,Z) = P(X,Z)

Now we turn to Boolean operators. We can state that the intersection of classes C'; and

(5 is a subclass of D as follows:
C1(X), C2(X) — D(X)

In the other direction, we can state that C' is a subclass of the intersection of D and

D5 as follows:

C(X)— Di(X)

For union, we can express that the union of C'; and C is a subclass of D using the

following pair of rules:

Cy2(X) = D(X)

However, the opposite direction is outside the expressive power of Horn logic. To ex-
press the fact that C'is a subclass of the union of Dy and D5 would require a disjunction
in the head of the corresponding rule, which is not available in Horn logic. Note that
there are cases where the translation is possible. For example, when D; is a subclass
of Dy, then the rule C'(X) — D2 (X) is sufficient to express that C'is a subclass of the
union of Dy and D5. The point is that there is not a translation that works in all cases.

Finally, we briefly discuss some forms of restriction in OWL. The OWL statement

148 Logic and Inference: Rules

:C rdfs:subClassOf [rdf:type owl:Restriction ;
owl:onProperty :P ;

owl:allValuesFrom :D].
can be expressed in Horn logic as follows:
C(X),P(X,Y)— D(Y)

However, the opposite direction cannot be expressed in general. And the OWL state-

ment
[rdf:type owl:Restriction ;
owl:onProperty P

ow:lsomeValuesFrom :D] rdfs:subClassOf :C .
can be expressed in Horn logic as follows:
P(X,Y),D(Y) = C(X)

The opposite direction cannot be expressed in general.
Also, cardinality constraints and complement of classes cannot be expressed in

Horn logic in the general case.

5.6 Rule Interchange Format: RIF

5.6.1 Overview

Rule technology has existed for decades now, and exhibits a broad variety (e.g., action
rules, first order rules, logic programming). As a consequence, the aim of the W3C
Rule Interchange Format Working Group was not to develop a new rule language that
would fit all purposes, but rather to focus on the interchange among the various (exist-
ing or future) rule systems on the web. The approach taken was to develop a family of

languages, called dialects; RIF defined two kinds of dialects:

5.6 Rule Interchange Format: RIF 149

1. Logic-based dialects. These are meant to include rule languages that are based
on some form of logic; for example, first-order logic and various logic program-
ming approaches with different interpretations of negation (answer-set program-
ming, well-founded semantics, etc.). The concrete dialects developed so far un-

der this branch are:

e RIF Core, essentially corresponding to function-free Horn logic; and

e RIF Basic Logic Dialect (BLD), essentially corresponding to Horn logic

with equality.

2. Rules with actions. These are meant to include production systems and reactive

rules. The concrete dialect developed so far in this branch is:

e Production Rule Dialect (RIF-PRD).

The RIF family was designed to be both uniform and extensible. Uniformity is achieved
by expecting the syntax and semantics of all RIF dialects to share basic principles.
Extensibility refers to the possibility of future dialects being developed and added to
the RIF family. For the logic-based side, the RIF Working Group proceeded to support
uniformity and extensibility by developing the Framework for Logic Dialects (RIF-
FLD) which allows one to specify various rule languages by instantiating the various
parameters of the approach. This framework is a major achievement, but goes beyond
the scope of this book. In the following we will present the basic ideas of RIF-BLD.
Before doing so, it should be stated that a lot, if not most, of the work of the RIF
Working Group was dedicated to semantic aspects. Of course, rule interchange takes
place at the syntactic level (e.g., using XML) using mappings between the various
syntactic features of a logic system and RIF. But the main objective is to interchange

rules in a semantics preserving way.

150 Logic and Inference: Rules

5.6.2 RIF-BLD

The RIF Basic Logic Dialect basically corresponds to Horn logic with equality plus
e data types and built ins, and
e frames.

RIF-BLD, like all other RIF variants, is expected to support a uniform set of com-
monly used datatypes, predicates, and functions. This set includes data types (such
as integer, boolean, string, date), “built-in” predicates (such as numeric-greater-than,
starts-with, date-less-than), and functions (such as numeric-subtract, replace, hours-
from-time) ranging over these data types.

As an example, suppose we wish to express a rule stating that an actor is a movie
star if he has starred in more than three successful movies, produced in a span of at
least five years. And a film is considered successful if it has received critical acclaim
(say, a rating higher than 8 out of 10) or was financially successful (produced more
than $100 million in ticket sales). These rules should be evaluated against the DBpedia
data set.

These rules can be expressed in RIF-BLD as follows:

Document(
Prefix(func <http://www.w3.0rg/2007 /rif-builtin-function#>
Prefix(pred <http://www.w3.0rg/2007 /rif-builtin-predicate# >
Prefix(rdfs <http://www.w3.0rg/2000/01/rdf-schema#>
Prefix(imdbrel <http://example.com/imdbrelation#>
Prefix(dbpedia <http://dbpedia.org/ontology/>
Prefix(ibdbrel <http://example.com/ibdbrelation# >

Group(
Forall ?Actor ?Film ?Year (

If And(dbpedia:starring(?Film ?Actor)
dbpedia:dateOfFilm(?Film ?Year)

5.6 Rule Interchange Format: RIF 151

Then dbpedia:starredInYear(?Film ?Actor ?Year)

)
Forall ?Actor (
If (Exists 7Film1 ?Film2 ?Film3 ?Yearl 7Year2 ?Year3
And (dbpedia:starredinYear(?Film1l ?Actor ?Yearl)
dbpedia:starredInYear(?Film2 ?Actor ?Year2)
dbpedia:starredInYear(?Film3 ?Actor ?Year3)
External (pred:numeric-greater-than(

External(func:numeric-subtract ?Yearl ?Year3) 5)))

dbpedia:successful(?Film1)
dbpedia:successful (?Film2)
dbpedia:successful(?Film3)
External (pred:literal-not-identical(?Film1 ?Film2))
External (pred:literal-not-identical(?Film1 ?Film3))
External (pred:literal-not-identical(?Film2 ?Film3))

)

Then dbpedia:movieStar(?Actor)

)
Forall ?Film (

If Or (
External(pred:numeric-greater-than(
dbpedia:criticalRating(?Film 8))
External(pred:numeric-greater-than(

dbpedia:boxOfficeGross(?Film) 100000000)))
Then dbpedia:successful (?Film)

152 Logic and Inference: Rules

This example demonstrates the use of data types and built ins. Note the use of External
in applying built-in predicates. Also the use of Group to put together a number of rules.

The syntax of RIF is rather straightforward, though quite verbose (of course, there
is also an XML-based syntax to support interchange between rule systems). Variable
names begin with a question mark. And the symbols =, #, and ## are used to express
equality, class membership, and subclass relationship, respectively.

The use of frames has a long tradition in object-oriented languages and knowledge
representation, and has also been prominent in the area of rule languages (e.g., F-
Logic). The basic idea is to represent objects as frames and their properties as slots.
For example, we might have a class professor with slots such as name, office, phone,

department, etc. Such information is expressed in RIF-BLD using the notation

oid[slotl -> valuel ... slotn -> valuen]

5.6.3 Compatibility with RDF and OWL

A major feature of RIF is that it is compatible with the RDF and OWL standards. That
is, one can reason with a combination of RIF, RDF, and OWL documents. Thus RIF
facilitates the interchange of not just rules, but also RDF graphs and/or OWL axiom:s.
The basic idea of combining RIF with RDF is to represent RDF triples using RIF
frame formulas; a triple s p o is represented as s[p -> o]. The semantic definitions
are such that the triple is satisfied iff the corresponding RIF frame formula is, too. For

example, if the RDF triple
ex:GoneWithTheWind ex:FilmYear ex:1939
is true, then so is the RIF fact

ex:GoneWithTheWind[ex:FilmYear -> ex:1939]

5.6 Rule Interchange Format: RIF 153

Given the RIF rule (which states that the Hollywood Production Code was in place

between 1930 and 1968)

Group(
Forall ?Film (

If And(7Film[ex:Year -> ?Year]
External(pred:dateGreaterThan(?Year 1930))
External(pred:dateGreaterThan(1968 ?Year)))

Then ?Film[ex:HollywoodProductionCode -> ex:True]

)
)

one can conclude

ex:GoneWithTheWind[ex:HollywoodProductionCode -> ex:True]

as well as the corresponding RDF triple.
Similar techniques are used to achieve compatibility between OWL and RIF. The

main features are:
e The semantics of OWL and RIF are compatible;

e One can infer conclusions from certain combinations of OWL axioms and RIF

knowledge; and

e OWL2 RL can be implemented in RIF (see next section).

5.6.4 OWL2 RL in RIF

OWL2 RL is partially described by a set of first-order rules that can form the basis
for an implementation using rule technology. To enable interoperability between rule
systems and OWL2 RL ontologies, this axiomatization can be described using RIF

(BLD, actually even in the simpler Core) rules.

154 Logic and Inference: Rules

The OWL2 RL rules can be categorized in four (non-disjoint) categories: triple

pattern rules, inconsistency rules, list rules, and datatype rules.

Triple Pattern Rules These rules derive certain RDF triples from a conjunction
of RDF triple patterns. Translation of these rules to RIF (using Frame formulas) is

straightforward using rules of the form:*

Group(
Forall ?V1 ... ?Vn(

s[p->o] :- And(s1[pl->o1l]... sn[pn->on]))

Inconsistency Rules Such rules indicate inconsistencies in the original RDF graph
(of course w.r.t. the existing OWL knowledge). These rules can be easily represented
in RIF as rules with conclusion rif:error, a predicate symbol within the RIF namespace
that can be used to express inconsistency. For example, an inconsistency occurs when
two predicates have been declared to be disjoint, but connect the same entities. This

can be expressed in RIF as follows:

Group(
Forall ?7P1 7P2 7X ?Y(
rif:error - And(
?P1[owl:propertyDisjointWith 7P2] ?X[?P1->7Y] ?X[?P2->7Y]))

List Rules A number of OWL2 RL rules involve processing OWL expressions that
include RDF lists (for example owl:AllDifferent). Two approaches are possible to
express these rules in RIF. One may use recursive rules to traverse RDF graphs at run

time, yielding a uniform representation. Or one may take a preprocessing approach

4For improved readability, these rules are given in Prolog (backward) notation, instead of the If-Then
(forward) notation used so far.

5.7 Semantic Web Rules Language (SWRL) 155

where rules are directly instantiated for the lists that actually occur in the input RDF
graph, which may perform better in practice. Readers are referred to the translation

document (see suggested reading) for details.

Datatype Rules These rules provide type checking and value equality/inequality
checking for typed literals in the supported datatypes. For example, such rules may
derive owl:sameAs triples for literals with the same value in the datatype (e.g., 1 and
1.0), or an inconsistency if a literal is specified to be an instance of a data type but its
value is outside the value space of that data type. The translation to RIF rules is rather

straightforward.

5.7 Semantic Web Rules Language (SWRL)

SWRL is a proposed Semantic Web language combining OWL DL with function-free
Horn logic and is written in Unary/Binary Datalog RuleML (see section 5.11). Thus it
allows Horn-like rules to be combined with OWL DL ontologies.

A rule in SWRL has the form
Bl,...,Bn%Al,...,Am

where the commas denote conjunction on both sides of the arrow and
Ai,...,An, By,..., B, can be of the form C(z), P(z,y), sameAs(x,y), or
dif ferentFrom(z,y), where C is an OWL description, P is an OWL property, and
z,y are Datalog variables, OWL individuals, or OWL data values.

If the head of a rule has more than one atom (if it is a conjunction of atoms without
shared variables), the rule can be transformed to an equivalent set of rules with one
atom in the head in a straightforward way.

The main complexity of the SWRL language stems from the fact that arbitrary

OWL expressions, such as restrictions, can appear in the head or body of a rule. This

156 Logic and Inference: Rules

feature adds significant expressive power to OWL, but at the high price of undecidabil-
ity; that is, there can be no inference engine that draws exactly the same conclusions as
the SWRL semantics.

Compared to OWL2 RL, SWRL lies at the other end of the integration of descrip-
tion logics and function-free rules. Where OWL2 RL uses a very conservative ap-
proach, seeking to combine the advantages of both languages in their common sublan-
guage, SWRL takes a more maximalist approach and unites their respective expressiv-
ities. From a practical perspective, the challenge is to identify sublanguages of SWRL
that find the right balance between expressive power and computational tractability. A
candidate for such a sublanguage is the extension of OWL DL with DL-safe rules, in
which every variable must appear in a non-description logic atom in the rule body. See
the articles on integrating rules with description logics in suggested reading.

As aremark, an outcome similar to SWRL can be achieved by combining RIF-BLD

with OWL2 RL (see suggested reading).

5.8 Rules in SPARQL: SPIN

Rules can be expressed in SPARQL using its CONSTRUCT feature. For example, the

rule
grandparent(X, Z) + parent(Y, Z), parent(X,Y)
can be expressed as:

CONSTRUCT {

7X grandParent 7Z.
} WHERE {

7Y parent 7Z.

7X parent 7Y,

5.8 Rules in SPARQL: SPIN 157

The recent proposal SPIN takes this as a starting point to propose a modeling lan-

guage over SPARQL. Its main ideas and features include:

e Itusesideas of object-oriented modeling in associating rules to classes; thus rules
may represent behavior of that class, and may not exist on their own (though

global rules can also be defined).

e [t expresses rules by SPARQL CONSTRUCT, DELETE, and INSERT, and con-

straints using the SPARQL ASK construct.

e It provides abstraction mechanisms for rules using Templates, which in essence
encapsulate parameterized SPARQL queries; and user-defined SPIN functions
as a mechanism to build higher-level rules (complex SPARQL queries) on top of

simpler building blocks.

As a proof of concept, the OWL2 RL rules have been expressed in SPIN. For example,

the rule

Co(X) + C1(X), equivalentClass(Cy, Ca)

can be represented in SPARQL as:

CONSTRUCT {

X a ?7C2.
ks
WHERE {

77X a ?C1.

7C1 equivalentClass 7C2.

158 Logic and Inference: Rules

and then instantiated as a spin:rule for the class owl:Thing; this will allow the rule to
be applied to all possible instances.

It should be noted that SPARQL, and thus SPIN, is a rule language, not an im-
plemented rule system; for example, CONSTRUCT only expresses one inference step
(from one RDF graph to another). A rule system on top of SPARQL (e.g., a SPIN in-
ference engine) would need, among other things, to run CONSTRUCT iteratively and

to control recursion in case of recursive rules.

5.9 Nonmonotonic Rules: Motivation and Syntax

5.9.1 Informal Discussion

Now we turn our attention to nonmonotonic rule systems. So far, once the premises
of a rule were proved, the rule could be applied, and its head could be derived as
a conclusion. In nonmonotonic rule systems, a rule may not be applied even if all
premises are known because we have to consider contrary reasoning chains. In general,
the rules we consider from now on are called defeasible because they can be defeated
by other rules. To allow conflicts between rules, negated atomic formulas may occur

in the head and the body of rules. For example, we may write

p(X) = ¢(X)

r(X) = —q(X)

To distinguish between defeasible rules and standard, monotonic rules, we use a differ-

ent arrow:

p(X) = ¢(X)

r(X) = —q(X)

In this example, given also the facts

5.9 Nonmonotonic Rules: Motivation and Syntax 159

we conclude neither ¢(a) nor —¢g(a). It is a typical example of two rules blocking each
other. This conflict may be resolved using priorities among rules. Suppose we knew
somehow that the first rule is stronger than the second; then we could indeed derive
q(a).

Priorities arise naturally in practice and may be based on various principles:

e The source of one rule may be more reliable than the source of the second rule, or
it may have higher authority. For example, federal law preempts state law. And
in business administration, higher management has more authority than middle

management.
e One rule may be preferred over another because it is more recent.

e One rule may be preferred over another because it is more specific. A typical
example is a general rule with some exceptions; in such cases, the exceptions are

stronger than the general rule.

Specificity may often be computed based on the given rules, but the other two princi-
ples cannot be determined from the logical formalization. Therefore we abstract from
the specific prioritization principle, and assume the existence of an external priority
relation on the set of rules. To express the relation syntactically, we extend the rule

syntax to include a unique label. For example,

1 p(X) = ¢(X)

ro:r(X) = —q(X)
Then we can write

1 > T2

160 Logic and Inference: Rules

to specify that ry is stronger than 7.
We do not impose many conditions on >. It is not even required that the rules form
a complete ordering. We require only the priority relation to be acyclic. That is, it is

impossible to have cycles of the form
rL>Tre > .. >0y >

Note that priorities are meant to resolve conflicts among competing rules. In simple
cases two rules are competing only if the head of one rule is the negation of the head of
the other. But in applications it is often the case that once a predicate p is derived, some
other predicates are excluded from holding. For example, an investment consultant may
base his recommendations on three levels of risk that investors are willing to take: low,
moderate, and high. Only one risk level per investor is allowed to hold at any given
time. Technically, these situations are modeled by maintaining a conflict set C'(L) for

each literal L. C'(L) always contains the negation of L but may contain more literals.

5.9.2 Definition of the Syntax
A defeasible rule has the form
r:Ly,...,L, =L

where r is the label, {L1,...,L,} the body (or premises), and L the head of the
rule. L,Lq,...,L, are positive or negative literals (a literal is an atomic formula
p(t1, ..., t,) orits negation —p(t1,...,tm)). No function symbols may occur in the
rule.> Sometimes we denote the head of a rule as head(r), and its body as body(r).
Slightly abusing notation, sometimes we use the label r to refer to the whole rule.

A defeasible logic program is a triple (F, R,>) consisting of a set F' of facts, a
finite set R of defeasible rules, and an acyclic binary relation > on R (precisely, a set

of pairs » > 7’ where r and r’ are labels of rules in R).

SThis restriction is imposed for technical reasons, the discussion of which is beyond the scope of this
chapter.

5.10 Example of Nonmonotonic Rules: Brokered Trade 161

5.10 Example of Nonmonotonic Rules: Brokered Trade

This example shows how rules can be used in an electronic commerce application
(which ideally will run on the Semantic Web). Brokered trades take place via an inde-
pendent third party, the broker. The broker matches the buyer’s requirements and the
sellers’ capabilities and proposes a transaction in which both parties can be satisfied by
the trade.

As a concrete application we will discuss apartment renting, a common activity
that is often tedious and time-consuming. Appropriate web services can reduce the

effort considerably. We begin by presenting the potential renter’s requirements.

Carlos is looking for an apartment of at least 45 sq m with at least two
bedrooms. If it is on the third floor or higher, the house must have an

elevator. Also, pet animals must be allowed.

Carlos is willing to pay $300 for a centrally located 45 sq m apartment, and
$250 for a similar apartment in the suburbs. In addition, he is willing to
pay an extra $5 per square meter for a larger apartment, and $2 per square

meter for a garden.

He is unable to pay more than $400 in total. If given the choice, he would
go for the cheapest option. His second priority is the presence of a garden;

his lowest priority is additional space.

5.10.1 Formalization of Carlos’s Requirements

We use the following predicates to describe properties of apartments:

apartment(z) stating that x is an apartment

size(x,y) y is the size of apartment z (in sq m)

OIn this case the landlord takes the role of the abstract seller.

162 Logic and Inference: Rules

bedrooms(x,y) 2 has y bedrooms
price(z,y) y is the price for x
floor(x,y) x is on the yth floor
garden(z,y) x has a garden of size y
elevator(x) there is an elevator in the house of x
pets(x) pets are allowed in x
central(x) x is centrally located

We also make use of the following predicates:

acceptable(x) flat = satisfies Carlos’s requirements

offer(x,y) Carlos is willing to pay $ y for flat
Now we present Carlos’s firm requirements. Any apartment is a priori acceptable.
r1 1 apartment(X) = acceptable(X)
However, Y is unacceptable if one of Carlos’s requirements is not met.

ro : bedrooms(X,Y),Y <2 = —acceptable(X)

rs: size(X,Y),Y < 45 = —acceptable(X)

ry: —pets(X) = —acceptable(X)

rs: floor(X,Y),Y > 2, -lift(X) = —acceptable(X)

re : price(X,Y),Y > 400 = —acceptable(X)
Rules ro-rg are exceptions to rule r1, so we add
To >1T1, T3 >T1, T4 >7T1,7T5 >1T1, T > 11

Next we calculate the price Carlos is willing to pay for an apartment.

5.10 Example of Nonmonotonic Rules: Brokered Trade 163

r7: size(X,Y),Y > 45 garden(X, Z), central(X) =
offer(X,300 + 2Z + 5(Y — 45))

rg: size(X,Y),Y > 45, garden(X, Z), ~central(X) =

offer(X,250 + 2Z +5(Y — 45))

An apartment is only acceptable if the amount Carlos is willing to pay is not less than
the price specified by the landlord (we assume no bargaining can take place).
ro : offer(X,Y),price(X,Z),Y < Z = —acceptable(X)

r9 > 11

5.10.2 Representation of Available Apartments

Each available apartment is given a unique name, and its properties are represented as
facts. For example, apartment a; might be described as follows:

bedrooms(ay, 1)

size(ay, 50)

central(ay)

floor(aq, 1)

—elevator(ay)

pets(ay)

garden(ay,0)

price(ay, 300)
The descriptions of the available apartments are summarized in table 5.1. In practice,

the apartments on offer could be stored in a relational database or, in a Semantic Web

setting, in an RDF storage system.

164 Logic and Inference: Rules

| Flat | Bedrooms | Size | Central [Floor [Elevator | Pets | Garden [Price |

ay 1 50 yes 1 no yes 0 300
as 2 45 yes 0 no yes 0 335
as 2 65 no 2 no yes 0 350
a4 2 55 no 1 yes no 15 330
as 3 55 yes 0 no yes 15 350
ag 2 60 yes 3 no no 0 370
ar 3 65 yes 1 no yes 12 375

Table 5.1: Available apartments

If we match Carlos’s requirements and the available apartments, we see that

e flat a; is not acceptable because it has one bedroom only (rule r5);

flats a4 and ag are unacceptable because pets are not allowed (rule 74);

for as, Carlos is willing to pay $300, but the price is higher (rules 77 and r9);

e flats a3, a5, and a7 are acceptable (rule 7).

5.10.3 Selecting an Apartment

So far, we have identified the apartments acceptable to Carlos. This selection is valu-
able in itself because it reduces the focus to relevant flats, which may then be physically
inspected. But it is also possible to reduce the number further, even down to a single
apartment, by taking further preferences into account. Carlos’s preferences are based

on price, garden size, and size, in that order. We represent them as follows:
r10 : acceptable(X) = cheapest(X)

r11 : acceptable(X), price(X, Z), acceptable(Y'), price(Y, W),
W < Z = —cheapest(X)

r12 ¢ cheapest(X) = largestGarden(X)

5.11 Rule Markup Language (RuleML) 165

r13 : cheapest(X), gardenSize(X, Z), cheapest(Y),
gardenSize(Y,W), W > Z = =largestGarden(X)

r14 ¢ largestGarden(X) = rent(X)

r15 : largestGarden(X), size(X, Z),largestGarden(Y),
size(Y,W),W > Z = —rent(X)

11 > T10, T13 > 712, T15 > T14

Rule 719 says that every acceptable apartment is cheapest by default. However, if there
is an acceptable apartment cheaper than X, rule r1; (which is stronger than r1¢) fires
and concludes that X is not cheapest.

Similarly, rules 712 and 73 select the apartments with the largest garden among the
cheapest apartments. And of these, rules r14 and 5 select the proposed apartments to
be rented, based on apartment size.

In our example, apartments a3 and a5 are cheapest. Of these a5 has the largest
garden. Note that in this case the apartment size criterion does not play a role: 714 fires
only for as, and rule 5 is not applicable. Thus a selection has been made, and Carlos

will soon move in.

5.11 Rule Markup Language (RuleML)

RuleML is a long-running effort to develop markup of rules on the web. It is actually
not one language but a family of rule markup languages, corresponding to different
kinds of rule languages: derivation rules, integrity constraints, reaction rules, and so
on. The kernel of the RuleML family is Datalog, which is function-free Horn logic.
RuleML is quite experimental in studying various features of rule languages that
are far from being standardized (e.g. nonmonotonic rules). The idea is that these efforts
may feed into future standards, in the same way that RuleML results were an important

building block in the development of RIF.

166 Logic and Inference: Rules

Rule Ingredient \ RuleML

fact Asserted Atom
rule Asserted Implies
head then

body if

atom Atom
conjunction And

predicate Rel

constant Ind

variable Var

Figure 5.1: RuleML vocabulary

The RuleML family provides descriptions of rule markup languages in XML, in the
form of RELAX NG or XML schemas (or document type definitions for earlier ver-
sions). The representation of rule ingredients is straightforward. Figure 5.1 describes
the key vocabulary of Datalog RuleML.

The expression of rules using the RuleML vocabulary is straightforward. For ex-
ample, the rule “The discount for a customer buying a product is 7.5 percent if the
customer is premium and the product is luxury” is represented in RuleML 1.0 as fol-

lows.

<Implies>
<then>
<Atom>
<Rel>discount< /Rel>
<Var>customer< /Var>
<Var>product< /Var>
<Ind>7.5 percent</Ind>
< /Atom>
</then>
<if>

<And>

5.11 Rule Markup Language (RuleML) 167

<Atom>
<Rel>premium< /Rel>
<Var>customer< /Var>

< /Atom>

<Atom>
<Rel>luxury</Rel>
<Var>product</Var>

< /Atom>

</And>
</if>

</Implies>

The language SWRL, introduced in section 5.7, is an extension of RuleML, and its use

is straightforward. As an example, we show the representation of the rule
brother(X,Y),childOf(Z,Y) — uncle(X, Z)
in the XML syntax of SWRL using RuleML 1.0.

<ruleml:Implies>
<ruleml:then>
<swrlx:individualPropertyAtom swrlx:property="uncle">
<ruleml:Var>X< /ruleml:Var>
<ruleml:Var>Z< /ruleml:Var>
< /swrlx:individualPropertyAtom>
< /ruleml:then>
<ruleml:if>
<ruleml:And>
<swrlx:individualPropertyAtom swrlx:property="brother" >
<ruleml:Var>X< /ruleml:Var>
<ruleml:Var>Y< /ruleml:Var>

< /swrix:individualPropertyAtom>

168 Logic and Inference: Rules

<swrlx:individualPropertyAtom swrlx:property="childOf">
<ruleml:Var>Z< /ruleml:Var>
<ruleml:Var>Y < /ruleml:Var>
< /swrix:individualPropertyAtom>
</ruleml:And>
< /ruleml:if>

< /ruleml:Implies>

5.12 Summary

e Rules on the (semantic) web form a very rich and heterogeneous landscape.

e Horn logic is a subset of predicate logic that allows efficient reasoning. It forms
a subset orthogonal to description logics. Horn logic is the basis of monotonic

rules.

e RIF is a new standard for rules on the web. Its logical dialect BLD is based on

Horn logic.

e OWL2 RL, which is essentially the intersection of description logics and Horn

logic, can be embedded in RIF.

e SWRL is a much richer rule language, combining description logic features with

restricted types of rules.

e Nonmonotonic rules are useful in situations where the available information is
incomplete. They are rules that may be overridden by contrary evidence (other

rules).
e Priorities are used to resolve some conflicts between nonmonotonic rules.

e The representation of rules in XML-like languages, such as those provided by

RIF and RuleML, is straightforward.

5.12 Summary 169

Suggested Reading

Horn logic is a standard topic in logic. More information can be found in relevant

textbooks, such as the following:

e E. Burke and E. Foxley. Logic and Its Applications. Upper Saddle River, N.J.:

Prentice Hall, 1996.

e M. A. Covington, D. Nute, and A. Vellino. Prolog Programming in Depth, 2nd
ed. Upper Saddle River, N.J.: Prentice Hall, 1997.

A. Nerode and R. A. Shore. Logic for Applications. New York: Springer, 1997.

U. Nilsson and J. Maluszynski. Logic, Programming and Prolog, 2nd ed. New
York: Wiley, 1995.

N. Nissanke. [Introductory Logic and Sets for Computer Scientists. Boston:

Addison-Wesley, 1998.

Nonmonotonic rules are a quite new topic. Information can be found in the second

textbook above, and in the following articles:

e G. Antoniou, D. Billington, G. Governatori, and M. J. Maher. Representation Re-
sults for Defeasible Logic. ACM Transactions on Computational Logic 2 (April

2001): 255-287.

e N. Bassiliades, G. Antoniou, and I. Vlahavas. A Defeasible Logic Reasoner
for the Semantic Web. International Journal on Semantic Web and Information

Systems 2,1 (2006): 1-41.

e T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining Answer
Set Programming with Description Logics for the Semantic Web. In Proceedings
of the 9th International Conference on Principles of Knowledge Representation

and Reasoning (KR’04), AAAI Press 2004, 141-151.

170 Logic and Inference: Rules

e D. Nute. Defeasible Logic. In Handbook of Logic in Artificial Intelligence and
Logic Programming Vol. 3, ed. D. M. Gabbay, C. J. Hogger, and J. A. Robinson.

New York: Oxford University Press, 1994.
Information about RIF and its compatibility with RDF and OWL is found at
e http://www.w3.0rg/2005/rules/wiki/Primer.
o http://www.w3.org/TR/rif-overview/.
e http://www.w3.org/TR/rif-bld/.
e http://www.w3.org/TR/rif-rdf-owl/.
An introduction to the formal foundation of RIF-BLD is found in

e M. Kifer. Knowledge Representation and Reasoning on the Semantic Web: RIF.
In Handbook of Semantic Web Technologies, eds. J. Domingue, D. Fensel, and
J. Hendler. Springer 2011.

Information about OWL2 RL and its embedding in RIF is found at
e http://www.w3.org/TR/owl2-profiles/.
e http://www.w3.org/TR/rif-owl-rl/.
Information on SPIN and its encoding of parts of OWL2 RL is found at
e http://www.w3.org/Submission/spin-overview/.
e http://topbraid.org/spin/owlrl-all.html.
Information about SWRL is found at

e www.w3.org/Submission/SWRL/.

Other important works on integrating rules with description logics are

5.12 Summary 171

e [. Horrocks, P. Patel-Schneider, S. Bechhofer, and D. Tsarkov. OWL Rules: A
Proposal and Prototype Implementation. Journal of Web Semantics 3,1 (2005):
23-40.

www.websemanticsjournal.org/ps/pub/2005-2.

e B. Motik, U. Sattler, and R. Studer. Query Answering for OWL-DL with Rules.
Journal of Web Semantics 3,1 (2005): 41-60.

www.websemanticsjournal.org/ps/pub/2005-3.

e R. Rosati. On the Decidability and Complexity of Integrating Ontologies and
Rules. Journal of Web Semantics 3,1 (2005): 61-73.

www.websemanticsjournal.org/ps/pub/2005-4.

General information about markup languages for rules and their use in the Semantic

Web can be found at the RuleML website:

e www.ruleml.org/.

Exercises and Projects

The following projects use rule technology. It is assumed that readers have some
knowledge and experience with basic Semantic Web technologies. If not, it may be

best to work on more basic projects first (see chapter 7).

Semantic Brokering

1. This basic project can be done by two people in two or three weeks. The aim is
to implement an application similar to the apartment renting example in section

5.10. The following tasks should be carried out:

(a) Select a topic in which a brokering activity is to be carried out. Here broker-

ing refers to the matching of offerings and requirements.

172 Logic and Inference: Rules

(b) Build an RDFS ontology for the domain.
(c) Populate the ontology with offerings, expressed in RDF.
(d) Express the selection criteria using nonmonotonic rules.

(e) Run your rules with the RDF/RDFS information using an engine such as
DR-DEVICE’ or DR-Prolog.® To do so, you will need to express the rules

in the format prescribed by these systems.

2. This advanced project can be carried out by two or three people over the course of a
term. The aim is to implement a brokering scenario in a multi-agent environment.
Apart from carrying out the steps described in project 5.4, project participants

need, among other things, to:

(a) Develop a basic understanding of brokering in multi-agent environments by

studying some relevant literature:

K. Sycara, S. Widoff, M. Klusch, and J. Lu. Larks: Dynamic
Matchmaking among Heterogeneous Software Agents in Cy-
berspace. Autonomous Agents and Multi-Agent Systems 5, 2
(2002): 173-203.

G. Antoniou, T. Skylogiannis, A. Bikakis, and N. Bassiliades. A
Deductive Semantic Brokering System. In Proceedings of the 9th
International Conference on Knowledge-Based Intelligent Infor-
mation and Engineering Systems. LNCS 3682, Springer 2005,
746-752.

(b) Choose and familiarize yourselves with a multi-agent system. We have had

good experience with JADE.’

(c) Decide on the precise messages to be exchanged between agents.

7pis.csd.auth.gr/systems/dr-device.html.
8www.csd.uoc.gr/~bikakis/DR-Prolog/.
9jade.tilab.com/.

5.12 Summary 173

(d) Find out how to remotely call the inference engine to be used.

Proof Layer

The aim of these projects is to realize a proof layer, the vision of which was briefly
outlined in chapter 1. Note that there is not one proof layer, but rather a proof layer
for each selected Semantic Web reasoning system (logic). Still, some considerations
are common to all such systems. Two possible logical systems for which one could

implement a proof layer are

e asimple monotonic rules language, such as Datalog (Horn logic without function

symbols), for which the reasoning tool Mandarax'® could be used;

e a nonmonotonic rules language, as discussed in this chapter, for which DR-

DEVICE'! or DR-Prolog'? could be used.

3. This basic project can be done by two or three people in about two months. The
aim is to develop an interactive system that provides explanation to the user.

Important aspects to be addressed include the following:

(a) Decide how to extract relevant information from the overall proof trace. You
could consult the automated reasoning and logic programming literature

for ideas.

(b) Define levels of granularity for representing proofs. Should whole proofs be
shown, or only metasteps? These could then be refined if the user questions

a certain step.

(¢) Ultimately, the “leaves” of a proof will be RDF facts, rules, or inference

conditions used.

¥mandarax.sourceforge.net/.

|pis.csd.auth.gr/systems/dr-device.html.
2www.csd.uoc.gr/ ~bikakis/DR-Prolog/.

174 Logic and Inference: Rules

4. Four or five people can carry out this advanced project over the course of a term.
The aim is to implement a proof layer in a multi-agent environment — that is,
requests and proof parts will be exchanged between agents. Additional aspects

to be considered include the following:

(a) Choose and familiarize yourselves with a multi-agent system. We have had
good experience with JADE. '3

(b) Represent proofs in an XML language, ideally by extending RuleML.

(¢) Decide on the precise messages to be exchanged between agents.

Bjade.tilab.com/.

Chapter 6

Applications

Recent years have seen a dramatic acceleration in the uptake of Semantic Web tech-
nologies, whereas the first years of Semantic Web applications (2000-2007) were
mostly dominated by industrial or academic prototypes that did not go into full pro-
duction. More recent years (since 2008) have seen full-scale production systems in a
variety of sectors in business and commerce that have used Semantic Web technolo-
gies in an essential manner. In this chapter, we will briefly describe some of these

applications.

Chapter Overview

We describe how deploying the GoodRelations ontology is beginning to change how
the online retail sector functions (section 6.1), how the BBC has been exploiting
Semantic Web technologies for maintaining and publishing their artists and music
archives (section 6.2) as well as for their reporting on high profile sports events (sec-
tion 6.3), how governments have been using semantic technologies for publishing their
data (section 6.4), and how the publishing industry is using Semantic Web technology,

using the New York Times as an example (section 6.5). Finally, we discuss the future

175

176 Applications

of web search by briefly describing Sig.ma (section 6.6), OpenCalais (section 6.7), and

Schema.org (section 6.8).

6.1 GoodRelations

6.1.1 Background

e-commerce, and in particular Business-to-Consumer (B2C) e-commerce, has been one
of the main drivers behind the rapid adoption of the World Wide Web in everyday live.
It is now commonplace to see URLSs listed on storefronts and goods vehicles. Taking
the UK as an example, the B2C market has grown from £87 million in April 2000 to
£68.4 billion by the end of 2009, a thousand-fold increase over a single decade.

This large e-commerce marketplace is suffering from all the deficits of the tradi-
tional web: e-commerce websites are typically generated from structured information
systems, listing price, availability, type of product, delivery options, etc., but by the
time this information reaches the company’s web pages, it has been turned into HTML
and all machine-interpretable structure has disappeared, with the result that machines
can no longer distinguish a price from a product-code. Search engines suffer from this
inability to interpret the e-commerce pages that they try to crawl and index, and are
unable to correctly distinguish product-types or to produce meaningful groupings of
products.

GoodRelations' is an OWL-compliant ontology that describes the domain of elec-
tronic commerce. It can be used to express an offering of a product, to specify a price,
to describe a business, and the like. The RDFa syntax for GoodRelations allows this
information to be embedded into existing web pages so that they can be processed by
other computers. The primary benefit of GoodRelations and the main driver behind its

rapidly increasing adoption is how it improves search. Adding GoodRelations to web

'http://www.heppnetz.de/projects/goodrelations//.

6.1 GoodRelations 177

pages improves the visibility of offers in modern search engines and recommender sys-
tems. GoodRelations allows for the annotation of products and services on the web in
a way that can be used by search engines to deliver a better search experience to their
users. It allows for very specific search queries and gives very precise answers.

Besides information on products and providers, the GoodRelations ontology also
allows the expression of commercial and functional details of e-commerce transactions,
such as eligible countries, payment and delivery options, quantity discounts, opening
hours, etc.

The GoodRelations ontology? contains classes such as gr:ProductOrServiceModel,
gr:PriceSpecification, gr:OpeningHoursSpecification and gr:DeliveryChargeSpecification,
with properties such as gr:typeOfGood, gr:acceptedPaymentMethods, gr:hasCurrency and

gr:eligibleRegions, among many others.

6.1.2 Example

We show a simple but realistic example taken from the pages of the Karneval Alarm
shop, selling party costumes in Germany. A particular web page® describes a superman
costume in size 48/50 for the price of 59.90 euros. This product (number 935 from
Karneval Alarm’s catalogue) is represented as the RDF entity offering 935 and, using
the RDFa syntax, the web page for this product contains, among others, the following

RDF statements:

offering 935 gr:name "Superman Kostum 48/50" ;
gr:availableAtOrFrom http://www.karneval-alarm.de/#shop ;
gr:hasPriceSpecification UnitPriceSpecification 935 .
UnitPriceSpecification 935 gr:hasCurrency "EUR" ;
gr:hasCurrencyValue "59.9" ;

gr:valueAdded TaxIncluded "true" .

Zhttp://www.heppnetz.de/ontologies/goodrelations/v1.
3http://www.karneval-alarm.de/superman-m.html.

178 Applications

Figure 6.1: Triples extracted from RDFa markup in the product page for a superman
costume

These descriptions can also be browsed online* using the RDFa inspector from
Sindice.” See figure 6.1 for the overall graph, or use an online zoom-able view.®

Of course, such GoodRelation annotations need to mention product types and cat-
egories. For this purpose, the Product Ontology’ describes products that are derived

from Wikipedia pages.

An example would be

pto:Party costume a owl:Class;
rdfs:subClassOf gr:ProductOrService;
rdfs:label "Party Costume"@en;

rdfs:comment """A party costume is clothing..."""@en
which would allow us to say
offering_ 935 pr:typeOfGood pto:Party Costume

The Product Ontology contains several hundred thousand OWL DL class defini-

tions of products. These class definitions are tightly coupled with Wikipedia: the edits

“http:/ /www.karneval-alarm.de/superman-m.html.
Shttp://inspector.sindice.com/.
®http://inspector.sindice.com/inspect?url=

http%3A//www.karneval-alarm.de/superman-m.html#GRAPH.
"http:/ /www.productontology.org/.

6.1 GoodRelations 179

in Wikipedia are reflected in the Product Ontology. This means that if a supplier sells
a product that is not listed in the Product Ontology, they can create a page for it in

Wikipedia and the product type will appear within 24 hours in the Product Ontology.

6.1.3 Adoption

The first company to adopt the GoodRelations ontology on a large scale was BestBuy,
a large US retailer of consumer electronics. BestBuy reported a 30 percent increase
in search traffic for its GoodRelation-enhanced pages, and a significantly increased
click-through rate. Google is now recommending the use of GoodRelations for se-
mantic markup of e-commerce pages, and both Yahoo and Google are crawling RDFa
statements and using them to enhance the presentation of their search results. Other
adopters at the time of writing are Overstock.com retailers, the O’Reilly Media pub-
lishing house, the Peek & Cloppenburg clothing chain store, and smaller enterprises
such as Robinson Outdoors and the aforementioned Karneval Alarm. At the time of
writing, the Sindice semantic search engine lists 273,000 pages annotated with the

GoodRelations vocabulary.

6.1.4 Publication

Martin Hepp. GoodRelations: An Ontology for Describing Products and Services Of-
fers on the Web. In Proceedings of the 16th International Conference on Knowledge
Engineering and Knowledge Management (EKAW2008). Acitrezza, Italy. September
29 — October 3, 2008. Springer LNCS, Vol 5268, 332-347.

180 Applications

6.2 BBC Artists

6.2.1 Background

The BBC Music Beta project?® is an effort by the BBC to build semantically linked and
annotated web pages about artists and singers whose songs are played on BBC radio
stations. Within these pages, collections of data are enhanced and interconnected with
semantic metadata, letting music fans explore connections between artists that they
may have not known existed.

Previously, writers at the BBC would have to write (and keep up to date) interesting
and relevant content on every single artist page they published. Instead, on the Music
Beta project, the BBC is pulling in information from external sites such as MusicBrainz
and Wikipedia and aggregating this information to build their web pages.

For this purpose, the BBC has adopted the RDF standard, and has mapped its own
data schema with that published by MusicBrainz to utilize the unique identifiers that
MusicBrainz provides. This allows the BBC site to leverage public domain content,
augmenting the profile pages found there. MusicBrainz is an open content music
“metadatabase” that lists information for over 400,000 artists; the information con-

tained in the info-boxes on Wikipedia pages is captured in DBPedia.

6.2.2 Example

As an example, we can look at the BBC Artist web page for John Lennon.” At first
sight, this web page looks like a regular web page with artist information such as bio-
graphical information, professional information such as artists that John Lennon played
with and the bands he played in, reviews of albums, etc. But the page is also a rich set of
RDF triples, using the MusicBrainz identifier for John Lennon 4d5447d7 as a resource

to state such information as:

8http://www.bbc.co.uk/music/artists.
http:/ /www.bbc.co.uk/music/artists/4d5447d7-c61c-4120-balb-d7f471d385b9.

6.2 BBC Artists 181

5c014631#artist foaf:name "John Lennon"

4d5447d7#artist bio:event :nodel5vknin3hx2
_:nodel5vknin3hx2 rdf:type bio:Death
_:nodel5vknin3hx2 bio:date "1980-12-08"

4d5447d7#artist foaf:made _:nodel5vknin3hx7
_nodel5vknin3hx7 dc:title "John Lennon/Plastic Ono Band"

4d5447d7#artist owl:sameAs dbpedia:John _Lennon

which states that the artist named John Lennon died on December 12, 1980, that he
made a record entitled “John Lennon/Plastic Ono Band,” and that he is also known
under the URI dbpedia:John Lennon.

The full content of the BBC Artist page on John Lennon contains 60 triples, from
which a further 300 triples can be inferred using 40 different ontologies describing
family relations, the music domain, times and dates, geographical information, social
relations, and others.

The full site has in the order of 400,000 artist pages, 160,000 external links and
100,000 artist-to-artist relationships.

The use of Semantic Web technology, such as using URIs as identifiers and align-
ing these with external semantic data providers, means web pages can be created and
maintained with a fraction of the manpower required in the past. It is interesting to
note that the BBC is not only consuming such information resources, but is also serv-
ing them back to the world. Simply adding .rdf to the URI of any BBC Artist web
page will actually serve the RDF on which the page is based. By publishing the RDF
in this manner, the BBC is making their data available to third parties wanting to use it
elsewhere.

Of course, when using public information as input, there is always the risk of such

information containing errors. In such cases, the BBC does not repair those errors inter-

182 Applications

nally. Instead, they will repair the errors on the external sources such as MusicBrainz
and DBPedia. This not only results in repairing the errors on the BBC site as well
(since it is feeding of those sources), but it also repairs the error for any other user of
these data sources, thereby contributing to increased quality of publicly available data

sources.

6.2.3 Adoption

The BBC Artist project is “a part of a general movement that’s going on at the BBC to
move away from pages that are built in a variety of legacy content production systems
to actually publishing data that we can use in a more dynamic way across the web.” The
BBC is basing other parts of their website on Linked Data standards and resources in-
cluding program information,'® with URI’s for programs and using the BBC’s program
ontology,!! and wildlife information from the BBC’s extensive range of high-quality

nature programs using the BBC’s own WildLife ontology.'?

6.3 BBC World Cup 2010 Website

6.3.1 Background

Besides broadcasting radio and television programs, the BBC puts substantial effort
into building websites to provide news and media information. For their website for
the 2010 World Cup soccer event, the BBC deployed semantic technologies in order
to achieve more automatic content publishing, a higher number of pages manageable

with a lower headcount, semantic navigation, and personalization.

0http:/ /www.bbc.co.uk/programmes.
http://www.bbc.co.uk/ontologies/programmes/2009-09-07.shtml.
2http://www.bbc.co.uk/ontologies/wildlife/2010-02-22.shtml.

6.3 BBC World Cup 2010 Website 183

6.3.2 Example

A typical page for a player looks like the one in figure 6.2.!® Similar pages exist for
hundreds of players, dozens of teams, all groups, all matches, etc., and of course all of
these are highly interlinked.

The BBC has developed small ontologies to capture the domain of soccer, includ-
ing domain-specific notions concerning soccer teams and tournaments, as well as very
generic notions for events and geographic locations, using well-known ontologies such
as FOAF'* and GeoNames. !>

Figure 6.3 shows a small example of the BBC’s World Cup ontology. These on-
tologies were used to infer additional information for display to the user, such as which

national competition a player participates in and which team the player is a member of.

6.3.3 Adoption

The system powering the BBC World Cup site has a classical three-tier architecture,
with (i) all information stored in an RDF triple-store, (ii) this triple store organized
by a number of ontologies that enable querying of the triple store, and (iii) a user-
interface layer that uses ontology-based queries to the triple store to obtain information
to display to the user.

With this publishing model, the BBC claims to have greatly increased their oppor-
tunities for content reuse and repurposing, reduced the journalist headcount required
to maintain the site, and improved the user experience through semantically driven
page-layout and multi-dimensional entry-points (player, match, group, etc.).

At its peak, the system was powered by a commercial triple-store vendor that was
handling a thousand SPARQL queries per minute (amounting to over a million queries

a day), together with hundreds of RDF statements inserted or updated every minute, as

Bhttp://news.bbc.co.uk/sport/football /world _cup 2010/groups_and _teams/team/
england/wayne _rooney.

http://xmlins.com/foaf/spec/.

Bhttp://www.geonames.org/.

184

Applications

| SPORT FOOTBALL

Latest matches

URU 2-3 NED

GER 0-1ESP

84

3 Highlights & report

URU 2-3 GER

. il Y) A
3 Highlights & report

NED 0-1ESP

3 Highlights & report

WORLD CUP 2010

WORLD CUP 2010

GROUPS & TEAMS

= Wayne Rooney

FIXTURES & RESULTS

Position:
Squad number: 10
Date of birth:
Height:

Tournament totals

Striker

24 October, 1985 (24 years old)
5'10" {178cm)

Games played

Wayne Rooney

Az substitute

—
Total England

Goals

Wayne Rooney

I
Total England

—
Best Diego Forlan

4

o

o w O

Shots on target | off target

8|5

38|23
T dsttenia 2 0
12

Wayne Rooney

Total Englanc

Most shots off target Ssamoah
Gyan, Cristiano Ronalda,
Wiesley Snejjder

Assists

o

Wayne Rooney

3
Total England
E——— 4
Best Leo Me_ssi, Bizstian

Schweeinsteiger

Figure 6.2: Typical page from BBC World Cup website

6.4 Government Data 185

Figure 6.3: Part of the BBC’s sports tournament ontology

well as using full OWL inference.

The BBC is planning to adopt the same approach to their Olympics 2012 website,
which will have to cover over 10,000 athletes from over 200 countries, with pages for
every discipline and for every event, displaying near real-time statistics and serving
58,000 hours of video content. Figure 6.4 shows a small part of the general sports

ontology that the BBC is developing.

6.4 Government Data

6.4.1 Background

Some of the early large-scale adoption of Semantic Web technologies in the world was
a result of the Obama administration’s drive towards more transparency of government.
Publishing data sources that had traditionally been locked up inside governmental in-
stitutions and not available to the public was seen as a crucial step toward more trans-
parent government, and Semantic Web technologies were seen as a key technology

for publishing these data. Sites such as http://data.gov have by now published some

186 Applications

Sports Ontology Olympics 2012 Track Cycling

Summer Olympics
‘sport:RecurringCompetition

lwmm
2012 Olympics

sport-DivisionalCompetition
lnputn-nhm

Men's Sprint sport:compstesin
sportMultiStageCompatition Event

lmvth-cmm CETD

sportaward \"‘"’"‘”
Men's Sprint Semifinals
sport:KnockoutCompetition
iy

Figure 6.4: Part of the BBC’s Olympics ontology

250,000 datasets from 250 different government agencies, ranging from economic in-
dicators to health-service statistics, and even environmental data. Not all (or even: not
much) of this data is in full Linked Data format, exploiting RDF, URIs, ontologies,
and linking to other datasets. In this context, it is useful to consider the 5-star scale
introduced by the W3C as a road toward publishing Linked Data that starts with much

simpler technologies. In brief:

* put data on the web at all, in any format, anywhere. For example, just putting
PDF documents with tables (or even scanned documents) on a website some-
where would already rate as a 1-x step in publishing data. Although technically
trivial, in practice this already means overcoming social, organizational, and bu-

reaucratic hurdles.

*% use a machine readable format. This means avoiding formats such as PDF doc-

6.4 Government Data 187

uments. Publishing Excel spreadsheets is the most typical example of a 2-x

data-publishing step.

* % % use an open format. This means avoiding propriety formats such as Excel, and
instead using open formats like .csv file or Open Office format. Typically simple

format-transformation steps might suffice to get from a 2-x to a 3-x rating.

* % x% give a URL for each data item. This is the first step where web semantics is making
its appearance: use a URI to denote every data-type, data-item, and data-property. This

allows others to link to the published dataset.

* % % % = Finally, link out to shared vocabularies. For example, use the DBPedia term for city when
talking about the class of all cities, and similar terms for names of entities and properties.
This use of external vocabularies truly enables the interlinking of datasets across different

sites.

6.4.2 Adoption

Although much of the data on http://data.gov has been (and still is) only in 2-x for-
mat, it turned out not to be hard to move this data up in the above ranking system. In
a period of eight months, students at the Rensselaer Polytechnic Institute managed to
“web-enable” 6.4 billion data-items from http://data.gov, and (more significantly),
they created applications for such diverse projects as plotting postal service expendi-
ture against performance, plotting wilderness fires against agency budgets (to measure
effectiveness), covering interstate migration from information on tax forms, plotting
family income against Medicare claims, comparing agency budgets across three public
budget datasets, and plotting social networks of people visiting the White House. Al-
though impossible to establish a causal link, the number of citizen appeals under the
Freedom of Information Act have reportedly dropped substantially since the launch of
http://data.gov.

Encouraged by this success, other governments have started to follow this exam-

188 Applications

ple, including the governments of many states and large cities in the US, countries
like Canada, Ireland, Norway, Australia, and New Zealand, and citizen-initiatives
have started in countries such as France, Italy, Denmark, Austria, Germany, and
many others. Perhaps the most significant take-up has been in the UK, where http:
//data.gov.uk has received strong support from the government, and where it is seen as
not only a step towards more transparent government, but also a cost-reduction mecha-
nism. Instead of building and maintaining expensive websites with governmental infor-
mation, the government simply publishes the underlying data sources and encourages
third parties (be it either citizens or commercial parties) to develop services on top of
these published data sources. In the US alone, over 200 applications built by third
parties have been reported. Such notable applications from around the world include a
safety map of bicycle routes, information for home buyers about their new neighbor-
hoods, a school finder, a nursery finder, pollution alerts, a regional expenditure map,
and WhereDidMyTaxGo.'®

Finally, intergovernmental agencies are following the same path, such as the
World Bank (data.worldbank.org), the European Commission’s website for Euro-
pean tendering procedures (ted.europa.eu), and the European statistics office Eurostat

(ec.europa.eu/eurostat/).

6.5 New York Times

Since 1913, the New York Times has been maintaining an index of all subjects on which
it has published. This has grown into a collection of almost 30,000 “subject headings,”
describing locations, people, organizations, and events. Every article in the New York
Times since its first appearance in 1851 has been tagged with these subject headings,
and such tags are being used to provide news-alerting services, to automate the editorial

process, and to build “topic pages” that collect all New York Times information for a

ohttp://www.wheredidmytaxgo.co.uk/.

6.6 Sig.ma and Sindice 189

given topic.

In 2009, the New York Times started to convert its entire subject headings index
to Semantic Web format. Not only is the entire headings list being published in RDF
format, but the terms are also being linked to hubs on the Linked Data Web such as
DBPedia, Freebase, and GeoNames. By 2010, this process was finished for about 30
percent of all subject headings.

The New York Times has reported that the linking of their subject headings with the
Linked Data Web helps them to provide geographic information (through the link with
GeoNames), helps them to align articles with other data sources that are often used
by the newspaper, such as the Library of Congress, and makes it possible to rapidly
build nonstandard mash-ups of their archive material, such as finding all items about

the alumni of a given University.

6.6 Sig.ma and Sindice

Whereas applications such as GoodRelations help traditional search engines to improve
their results without ever confronting the end-user with the underlying RDF graphs,
the search engine Sindice'” and its front-end Sig.ma'® are different: Sindice operates
directly on the RDF graph that makes up the global Semantic Web, and Sig.ma presents
to the user the binary relations that are discovered in this way.

Sindice has a classical search engine architecture: a crawler, a very large indexed
store, and a retrieval interface. But the difference from a classical search engine is
that Sindice does not retrieve and index words and phrases, but instead retrieves and
indexes RDF graphs. At the time of writing, Sindice indexes some 400 million RDF
“documents,” resulting in 12 billion RDF statements. These statements are indexed

and available for querying through a SPARQL endpoint. This produces a database-like

17http://sindice.com.
Bhttp://sigm.ma.

190 Applications

access to the Web of Data that can be used by developers and businesses to power
products and services. Interestingly, the Sindice crawler is not limited to crawling
RDF-graphs but also crawls other forms of structured data, such as those using the
HTML5 microdata format using the schema.org vocabulary, or other microformats.

Sig.ma is a user interface that was created as a demonstration of live querying on
the Web of Data. Starting from keyword search, Sig.ma identifies the URLs on the Web
of Data that are relevant to a keyword and finds all triples that describe these URLs.
Through an interactive user interface the user can investigate which triples originate
from which data sources, select or remove specific data sources, “walk the graph” by
clicking on the URLs which are given as related to the search term, and turn on the
URLs related to those, etc.

By using the Sindice search engine, Sig.ma gives the user a live view of what is on
the “Web of Data” about any given topic. Due to its ingenious user interface and to the
very complete database of Sindice, Sig.ma is probably the best location for lay users to
get a feel for the structure and size of the current Web of Data and the sheer amount of

knowledge it already captures.

6.7 OpenCalais

The press agency Thompson Reuters produces thousands of news items every day, cov-
ering wide areas of science, business, politics, and sports. Although originally intended
to be read by humans, a key observation of Reuters is that many of the consumers of
their news items are no longer people, but instead computers. Computers are reading
the news flowing out of Reuters, analyzing it and producing summaries, reading lists,
financial investment advice, etc.

This leads to the paradoxical situation of computers producing information for
computers using unstructured natural language as a rather unsuited communication

medium. Reuter’s OpenCalais service is intended to help computers process data cap-

6.7 OpenCalais 191

Entities:

B city

Amsterdam, Morth
Edinburgh, Scotland, United Kingdom B

| (0]
]

B¥ Facility
Urivversity of Edinburgh |
B[] organization Events & Facts: =
5wl Departrnent | | _ |
Uriversity of Edinburgh P— &] Generic Relations
B~ person Frank van Harmelen, move
Frark van Harmelen, move
- 5
:Ia;ViHT_dV Eob Wielinga, the Al research group, jain
FD e L mia i Frank van Harmelen, work
ara” YarRermoSn Frank van Harmelen, work.
WEdii iy B+ person Relation
—

artificial intelligence Frank wan Harmelen, Alan Bundy, Buisness

Figure 6.5: Objects and relations recognized by OpenCalais

tured in natural language texts. It does this by analyzing a text, recognizing named
entities such as people, locations, companies, etc., and annotating the text with RDF to
identify these named entities.

As a simple example, the following text produces the entities and relations as shown

in figure 6.5:

After studying mathematics and computer science in Amsterdam, Frank
van Harmelen moved to the Department of Al of the University of Edin-
burgh. While in Edinburgh, he worked with Prof. Alan Bundy on proof
planning for inductive theorem proving. After his PhD research, he moved
back to Amsterdam where he worked from 1990 to 1995 in the SWI De-
partment under Prof. Bob Wielinga. In 1995 he joined the Al research

group at the Vrije Universiteit Amsterdam.

For these objects, Reuters uses its own URIs to identify the entities, but many of
these private URIs are linked through owl:sameAs statements to more widely adopted
URISs for the same entities taken from GeoNames, DBPedia, FreeBase, the Internet
Movie Database, and others. This allows us to further retrieve information about these

entities from Reuter’s database, such as financial information, names of board mem-

192 Applications

bers, etc. Thus, through OpenCalais, it is possible to move from a natural language
text mentioning a term to a web of structured information items. In 2011, Calais was

reported to be processing five million documents per day.

6.8 Schema.org

Schema.org is an effort by search engine providers (Google, Yahoo, Microsoft, Yan-
dex) to encourage the semantic mark up of pages. It encourages this through the def-
inition of a common schema or vocabulary available at schema.org. The vocabulary
covers common things that people search for, such as products, jobs, and events. By
using a common vocabulary, search engines are able to better index pages but also show
richer information in search results.

Schema.org supports markup presented both in microdata and RDFa 1.1 Lite. Thus,
one can mix the Schema.org vocabulary with others on the web such as the previously
discussed Good-Relations ontology. Schema.org shows how applications can drive the

adoption of machine-understandable markup.

6.9 Summary

Semantic Web technologies are being used in a wide variety of applications, from pow-
ering websites to making it easier for search engines to understand the content of web
pages. A key idea in all of these applications is that common ontologies provide a
basis for integrating and understanding knowledge from multiple sources. We have
highlighted only some major Semantic Web applications, though there are countless
more that are being used everyday. We encourage you to investigate and see what else

is being done.

Chapter 7

Ontology Engineering

7.1 Introduction

So far, we have focused mainly on the techniques that are essential to the Semantic
Web: representation languages, query languages, transformation and inference tech-
niques, and tools. Clearly, the introduction of such a large volume of new tools and
techniques also raises methodological questions: How can tools and techniques best
be applied? Which languages and tools should be used in which circumstances, and in

which order? What about issues of quality control and resource management?

Chapter Overview

Many of these questions for the Semantic Web have been studied in other contexts — for
example, in software engineering, object-oriented design, and knowledge engineering.
It is beyond the scope of this book to give a comprehensive treatment of all of these
issues. Nevertheless, in this chapter, we briefly discuss some of the methodological
issues that arise when building ontologies, in particular, constructing ontologies man-

ually (section 7.2), reusing ontologies (section 7.3), and using semiautomatic methods

193

194 Ontology Engineering

(section 7.4). Section 7.5 discusses ontology mapping. Section 7.6 describes how to
populate ontology instances from relational databases. Finally, section 7.7 explains
how Semantic Web tools can be integrated into a single architecture to build applica-

tions.

7.2 Constructing Ontologies Manually

For our discussion of the manual construction of ontologies, we follow mainly Noy and
McGuinness, “Ontology Development 101: A Guide to Creating Your First Ontology.”
Further references are provided in suggested reading.

We can distinguish the following main stages in the ontology development process:
1. Determine scope. 5. Define properties.
2. Consider reuse. 6. Define facets.
3. Enumerate terms. 7. Define instances.

4. Define taxonomy. 8. Check for anomalies.

Like any development process, this is in practice not linear. These steps will have to be
iterated, and backtracking to earlier steps may be necessary at any point in the process.
We will not further discuss this complex process management. Instead, we turn to the

individual steps.

7.2.1 Determine Scope

Developing an ontology of a domain is not a goal in itself. Developing an ontology
is akin to defining a set of data and its structure for other programs to use. In other
words, an ontology is a model of a particular domain, built for a particular purpose.
As a consequence, there is no correct ontology of a specific domain. An ontology is
by necessity an abstraction of a particular domain, and there are always viable alterna-
tives. What is included in this abstraction should be determined by the use to which

the ontology will be put, and by future extensions that are already anticipated. Basic

7.2 Constructing Ontologies Manually 195

questions to be answered at this stage are: What is the domain that the ontology will
cover? For what we are going to use the ontology? For what types of questions should

the ontology provide answers? Who will use and maintain the ontology?

7.2.2 Consider Reuse

With the spreading deployment of the Semantic Web, many ontologies, especially for
common domains (social networks, medicine, geography), are available for use. Thus,
we rarely have to start from scratch when defining an ontology. There is almost always
an ontology available from a third party that provides at least a useful starting point for

our own ontology (see section 7.3).

7.2.3 Enumerate Terms

A first step toward the actual definition of the ontology is to write down in an unstruc-
tured list all the relevant terms that are expected to appear in the ontology. Typically,
nouns form the basis for class names, and verbs (or verb phrases) form the basis for
property names (e.g., is part of, has component).

Traditional knowledge engineering tools such as laddering and grid analysis can be
productively used at this stage to obtain both the set of terms and an initial structure for

these terms.

7.2.4 Define Taxonomy

After the identification of relevant terms, these terms must be organized in a taxonomic
hierarchy. Opinions differ on whether it is more efficient/reliable to do this in a top-
down or a bottom-up fashion.

It is, of course, important to ensure that the hierarchy is indeed a taxonomic (sub-

class) hierarchy. In other words, if A is a subclass of B, then every instance of A must

196 Ontology Engineering

also be an instance of B. Only this will ensure that we respect the built-in semantics of

primitives such as rdfs:subClassOf.

7.2.5 Define Properties

This step is often interleaved with the previous one: it is natural to organize the prop-
erties that link the classes while organizing these classes in a hierarchy.

Remember that the semantics of the subClassOf relation demands that whenever
A is a subclass of B, every property statement that holds for instances of B must also
apply to instances of A. Because of this inheritance, it makes sense to attach properties
to the highest class in the hierarchy to which they apply.

While attaching properties to classes, it also makes sense to immediately provide
statements about the domain and range of these properties. There is a methodological
tension here between generality and specificity. On the one hand, it is attractive to give
properties as general a domain and range as possible, enabling the properties to be used
(through inheritance) by subclasses. On the other hand, it is useful to define domain
and range as narrowly as possible, enabling us to detect potential inconsistencies and

misconceptions in the ontology by spotting domain and range violations.

7.2.6 Define Facets

It is interesting to note that after all these steps, the ontology will only require the
expressivity provided by RDF Schema and does not use any of the additional primitives
in OWL. This will change in the current step, which is enriching the previously defined

properties with facets:

e Cardinality. Specify for as many properties as possible whether they are allowed
or required to have a certain number of different values. Often, occurring cases
are “at least one value” (i.e., required properties) and “at most one value” (i.e.,

single-valued properties).

7.2 Constructing Ontologies Manually 197

e Required values. Often, classes are defined by virtue of a certain property’s
having particular values, and such required values can be specified in OWL,
using owl:hasValue. Sometimes the requirements are less stringent: a property
is required to have some values from a given class (and not necessarily a specific

value, i.e., owl:someValuesFrom).

e Relational characteristics. The final family of facets concerns the relational char-
acteristics of properties: symmetry, transitivity, inverse properties, and func-

tional values.

After this step in the ontology construction process, it will be possible to check the
ontology for internal inconsistencies. (This is not possible before this step, simply
because RDF Schema is not rich enough to express inconsistencies.) Examples of often
occurring inconsistencies are incompatible domain and range definitions for transitive,
symmetric, or inverse properties. Similarly, cardinality properties are frequent sources
of inconsistencies. Finally, requirements on property values can conflict with domain

and range restrictions, giving yet another source of possible inconsistencies.

7.2.7 Define Instances

Of course, we rarely define ontologies for their own sake. Instead we use ontologies
to organize sets of instances, and it is a separate step to fill the ontologies with such
intances. Typically, the number of instances is many orders of magnitude larger than
the number of classes from the ontology. Ontologies vary in size from a few hundred
classes to tens of thousands of classes; the number of instances varies from hundreds
to hundreds of thousands, or even larger.

Because of these large numbers, populating an ontology with instances is typically
not done manually. Often, instances are retrieved from legacy data sources such as
databases as discussed in Section 7.6. Another often used technique is the automated

extraction of instances from a text corpus.

198 Ontology Engineering

7.2.8 Check for Anomalies

An important advantage of using OWL rather than RDF Schema is the possibility of de-
tecting inconsistencies in the ontology itself, or in the set of instances that were defined
to populate the ontology. Examples of often occurring anomalies are incompatible do-
main and range definitions for transitive, symmetric, or inverse properties. Similarly,
cardinality properties are frequent sources of inconsistencies. Finally, the requirements
on property values can conflict with domain and range restrictions, giving yet another

source of possible inconsistencies.

7.3 Reusing Existing Ontologies

One should begin with an existing ontology if possible. Existing ontologies come in a

wide variety.

7.3.1 Codified Bodies of Expert Knowledge

Some ontologies are carefully crafted by a large team of experts over many years.
An example in the medical domain is the cancer ontology from the National Cancer
Institute in the United States." Examples in the cultural domain are the Art and Ar-
chitecture Thesaurus (AAT),> containing 125,000 terms, and the Union List of Artist
Names (ULAN),? with 220,000 entries on artists. Another example is the Iconclass
vocabulary of 28,000 terms for describing cultural images.* An example from the ge-
ographical domain is the Getty Thesaurus of Geographic Names (TGN),> containing

over 1 million entries.

www.mindswap.org/2003/CancerOntology/.
www.getty.edu/research/tools/vocabulary/aat.
www.getty.edu/research/conducting research/vocabularies/ulan.
www.iconclass.nl/.

1
2
3
4
Swww.getty.edu/research/conducting _research/vocabularies/tgn.

7.3 Reusing Existing Ontologies 199

7.3.2 Integrated Vocabularies

Sometimes attempts have been made to merge a number of independently developed
vocabularies into a single large resource. The prime example of this is the Unified
Medical Language System,® which integrates 100 biomedical vocabularies and clas-
sifications. The UMLS metathesaurus alone contains 750,000 concepts, with over 10
million links between them. Not surprisingly, the semantics of such a resource that
integrates many independently developed vocabularies is rather low, but nevertheless it

has turned out to be very useful in many applications, at least as a starting point.

7.3.3 Upper-Level Ontologies

Whereas the preceding ontologies are all highly domain-specific, some attempts have
been made to define very generally applicable ontologies (sometimes known as upper-
level ontologies). The two prime examples are Cyc,’ with 60,000 assertions on 6,000

concepts, and the Standard Upperlevel Ontology (SUO).3

7.3.4 Topic Hierarchies

Other “ontologies” hardly deserve this name in a strict sense: they are simply sets of
terms, loosely organized in a specialization hierarchy. This hierarchy is typically not a
strict taxonomy but rather mixes different specialization relations, such as is-a, part-of,
or contained-in. Nevertheless, such resources are often very useful as a starting point.
A large example is the Open Directory hierarchy,” which contains more than 400,000

hierarchically organized categories and is available in RDF format.

Sumlsinfo.nlm.nih.gov/.
7www.opencyc.org/.
8suo.ieee.org/.
9dmoz.org/.

200 Ontology Engineering

7.3.5 Linguistic Resources

Some resources were originally built not as abstractions of a particular domain but
rather as linguistic resources. Again, these have been shown to be useful as starting
places for ontology development. The prime example in this category is WordNet,

with over 90,000 word sense definitions.'?

7.3.6 Encyclopedic Knowledge

Wikipedia, the community-generated encyclopedia, provides a plethora of information

about a range of topics. The DBpedia project'!

extracts knowledge from Wikipedia
and exposes it as Linked Data using RDF and OWL. The breadth of knowledge from
Wikipedia has made the site a first point of reference when building ontologies. Yago'?
is another knowledge base that leverages Wikipedia but it also contains information

from Wordnet and geographical resources like GeoNames.'?

7.3.7 Ontology Libraries

There are several online repositories of ontologies. Examples include the TONES on-
tology repository,'# the BioPortal,'> and those provided with the Protégé ontology ed-
itor.!® Perhaps the best current repository of online ontologies is Swoogle,!” which
has cataloged over 10,000 Semantic Web documents and indexed metadata about their
classes, properties, and individuals as well as the relationships among them. Swoogle
also defines a ranking property for Semantic Web documents and uses this to help sort

search results. Alternatively, the Sindice search index maintains an index of almost all

1Ohttp: //wordnet.princeton.edu/, available in RDF at http://semanticweb.cs.vu.nl/lod /wn30/.
Thttp://dbpedia.org.

2http://www.mpi-inf.mpg.de/yago-naga/yago/.

Bhttp://www.geonames.org/.

1“http://owl.cs.manchester.ac.uk/repository /browser.

13See http://bioportal.bioontology.org/.

16 Reachable from http://protege.stanford.edu/download /ontologies.html.
7http://swoogle.umbc.edu/.

7.4 Semiautomatic Ontology Acquisition 201

RDF data published on the Semantic Web.'® Prefix.cc!® lists the most commonly used
namespace prefixes used on the Semantic Web. These prefixes link to the correspond-
ing ontology they represent.

It is only rarely the case that existing ontologies can be reused without changes.
Typically, existing concepts and properties must be refined (using owl:subClassOf
and owl:subPropertyOf). Also, alternative names must be introduced which
are better suited to the particular domain (e.g., using owl:equivalentClass and
owl:equivalentProperty). Also, this is an opportunity for fruitfully exploiting the fact
that RDF and OWL allow private refinements of classes defined in other ontologies.

The general question of importing ontologies and establishing mappings between
them is still wide open, and is considered to be one of the hardest Semantic Web re-

search issues.

7.4 Semiautomatic Ontology Acquisition

There are two core challenges for putting the vision of the Semantic Web into action.

First, one has to support the reengineering task of semantic enrichment for building
the web of metadata. The success of the Semantic Web greatly depends on the pro-
liferation of ontologies and relational metadata. This requires that such metadata can
be produced at high speed and low cost. To this end, the task of merging and align-
ing ontologies for establishing semantic interoperability may be supported by machine
learning techniques.

Second, one has to provide a means for maintaining and adopting the machine-
processable data that are the basis for the Semantic Web. Thus, we need mechanisms
that support the dynamic nature of the web.

Although ontology engineering tools have matured over the last decade, manual

8http://sindice.com.
Yhttp://prefix.cc.

202 Ontology Engineering

ontology acquisition remains a time-consuming, expensive, highly skilled, and some-
times cumbersome task that can easily result in a knowledge acquisition bottleneck.

These problems resemble those that knowledge engineers have dealt with over the
last two decades as they worked on knowledge acquisition methodologies or work-
benches for defining knowledge bases. The integration of knowledge acquisition with
machine learning techniques proved beneficial for knowledge acquisition.

The research area of machine learning has a long history, both on knowledge acqui-
sition or extraction and on knowledge revision or maintenance, and it provides a large
number of techniques that may be applied to solve these challenges. The following

tasks can be supported by machine learning techniques:
e Extraction of ontologies from existing data on the web
e Extraction of relational data and metadata from existing data on the web
e Merging and mapping ontologies by analyzing extensions of concepts
e Maintaining ontologies by analyzing instance data
e Improving Semantic Web applications by observing users

Machine learning provides a number of techniques that can be used to support these

tasks:
e Clustering
e Incremental ontology updates
e Support for the knowledge engineer
e Improving large natural language ontologies
e Pure (domain) ontology learning

Omelayenko (see suggested readings) identifies the following three types of ontologies

that can be supported using machine learning techniques.

7.4 Semiautomatic Ontology Acquisition 203

7.4.1 Natural Language Ontologies

Natural language ontologies (NLOs) contain lexical relations between language con-
cepts; they are large in size and do not require frequent updates. Usually they represent
the background knowledge of the system and are used to expand user queries. The
state of the art in NLO learning looks quite optimistic: not only does a stable general-
purpose NLO exist but so do techniques for automatically or semiautomatically con-

structing and enriching domain-specific NLOs.

7.4.2 Domain Ontologies

Domain ontologies capture knowledge of one particular domain, such as pharmaco-
logical or printer knowledge. These ontologies provide a detailed description of the
domain concepts in a restricted domain. Usually, they are constructed manually, but
different learning techniques can assist the (especially the inexperienced) knowledge
engineer. Learning domain ontologies is far less developed than NLO improvement.
The acquisition of domain ontologies is still guided by a human knowledge engineer,
and automated learning techniques play a minor role in knowledge acquisition. They
have to find statistically valid dependencies in the domain texts and suggest them to the

knowledge engineer.

7.4.3 Ontology Instances

Ontology instances can be generated automatically and frequently updated (e.g., a com-
pany profile in the Yellow Pages will be updated frequently) while the ontology remains
unchanged. The task of learning of the ontology instances fits nicely into a machine
learning framework, and there are several successful applications of machine learning
algorithms for this. But these applications are either strictly dependent on the domain
ontology or populate the markup without relating to any domain theory. A general-

purpose technique for extracting ontology instances from texts given the domain ontol-

204 Ontology Engineering

ogy as input has still not been developed.

Besides the different types of ontologies that can be supported, there are also dif-
ferent uses for ontology learning. The first three tasks in the following list (again, taken
from Omelayenko) relate to ontology acquisition tasks in knowledge engineering, and

the last three to ontology maintenance tasks:

e Ontology creation from scratch by the knowledge engineer. In this task machine
learning assists the knowledge engineer by suggesting the most important rela-

tions in the field or checking and verifying the constructed knowledge bases.

e Ontology schema extraction from web documents. In this task machine learn-
ing systems take the data and metaknowledge (like a metaontology) as input
and generate the ready-to-use ontology as output with the possible help of the

knowledge engineer.

e Extraction of ontology instances populates given ontology schemas and extracts
the instances of the ontology presented in the web documents. This task is sim-
ilar to information extraction and page annotation, and can apply the techniques

developed in these areas.

e Ontology integration and navigation deal with reconstructing and navigating in
large and possibly machine-learned knowledge bases. For example, the task can
be to change the propositional-level knowledge base of the machine learner into

a first-order knowledge base.

e An ontology maintenance task is updating some parts of an ontology that are
designed to be updated (like formatting tags that have to track the changes made

in the page layout).

e Ontology enrichment (or ontology tuning) includes automated modification of
minor relations into an existing ontology. This does not change major concepts

and structures but makes an ontology more precise.

7.5 Ontology Mapping 205

A wide variety of techniques, algorithms, and tools is available from machine learn-
ing. However, an important requirement for ontology representation is that ontologies
must be symbolic, human-readable, and understandable. This forces us to deal only
with symbolic learning algorithms that make generalizations and to skip other meth-
ods like neural networks and genetic algorithms. The following are some potentially

applicable algorithms:

e Propositional rule learning algorithms learn association rules or other forms of

attribute-value rules.

e Bayesian learning is mostly represented by the Naive Bayes classifier. It is based
on the Bayes theorem and generates probabilistic attribute-value rules based on
the assumption of conditional independence between the attributes of the training

instances.

e First-order logic rules learning induces the rules that contain variables, called

first-order Horn clauses.

e Clustering algorithms group the instances together based on the similarity or
distance measures between a pair of instances defined in terms of their attribute

values.

In conclusion, we can say that although there is much potential for machine learn-
ing techniques to be deployed for Semantic Web engineering, this is far from a well-

understood area.

7.5 Ontology Mapping

With reuse rather than development-from-scratch becoming the norm for ontology de-
ployment, ontology integration is an increasingly urgent task. It will rarely be the case

that a single ontology fulfills the needs of a particular application; more often than not,

206 Ontology Engineering

multiple ontologies will have to be combined. This raises the problem of ontology in-
tegration (also called ontology alignment or ontology mapping). Because of its crucial
nature, this problem has received wide attention in the research community in recent

years.

Current approaches to ontology mapping deploy a whole host of different methods,
coming from very different areas. We distinguish linguistic, statistical, structural, and

logical methods.

7.5.1 Linguistic Methods

The most basic methods try to exploit the linguistic labels attached to the concepts in
source and target ontology in order to discover potential matches. This can be as simple
as basic stemming techniques or calculating Hamming distances, or it can use special-
ized domain knowledge. An example of the latter would be that the difference between
Diabetes Melitus type I and Diabetes Melitus type II is not a negligible difference to be

removed by a small Hamming distance.

7.5.2 Statistical Methods

Instead of using the linguistic labels of concepts, other methods use instance data to
determine correspondences between concepts. If there is a significant statistical corre-
lation between the instances of a source concept and a target concept, there is reason to
believe that these concepts are strongly related (by a subsumption relation or perhaps
even an equivalence relation). These approaches of course rely on the availability of a
sufficiently large corpus of instances that are classified in both the source and the target

ontologies.

7.5 Ontology Mapping 207

7.5.3 Structural Methods

Since ontologies have internal structure, it makes sense to exploit the graph structure
of the source and target ontologies and try to determine similarities between these
structures, often in coordination with some of the other methods. If a source concept
and a target concept have similar linguistic labels, then the dissimilarity of their graph
neighborhoods could be used to detect homonym problems where purely linguistic

methods would falsely declare a potential mapping.

7.5.4 Logical Methods

The methods that are perhaps most specific to mapping onfologies are the logical meth-
ods. After all, ontologies are, as defined by R. Studer, “formal specifications of a shared
conceptualization,” and it makes sense to exploit this formalization of both source and
target structures. A serious limitation of this approach is that many practical ontologies
are semantically rather lightweight and thus do not carry much logical formalism with

them.

7.5.5 Mapping Implementations

There are several frameworks for ontology mapping such as the R2R Framework?® and
LIMES.?! The service sameas.org collects and exposes owl:sameAs mappings from
several different sources. While these projects have made great strides in creating
mappings, this is still a challenging area. The research community has run the Ontology
Alignment Evaluation Initiative?? for the past nine years to encourage the creation of

more accurate and comprehensive mappings.

20http:/ /wwwéa.wiwiss.fu-berlin.de/bizer/r2r/.
2lhttp://aksw.org/Projects/LIMES?v=z1l.
228ee http://oaei.ontologymatching.org/.

208 Ontology Engineering

7.6 Exposing Relational Databases

Most websites today are not a series of static pages stored on a web server but are
instead dynamically generated from data stored in relational databases. For example,
a real estate website would maintain a database of various homes and apartments with
information about price, location, and amenities. This database would then be used to
populate web pages. Because so much data is available in relational databases, it can
provide a convenient source of instance data.

Here, we give an overview of the process of exposing relational databases as on-

tologies.

7.6.1 Mapping Terminology

First, we revisit the terminology of a database and how the terminology can be mapped
to RDFS/OWL terms. Below is an example table from a real estate database. A table is
also called a relation. The table consist of series of columns with the headings Homeld,
City, and Price. These columns are called attributes. Each of the rows of the table is

called a tuple.

Homes

Homeld | City Price (Euros)
1 Amsterdam 100 000
2 Utrecht 200 000

Based on this terminology, one can follow a simple approach to map the relational
database schema to RDFS or OWL. Each table in the database can be considered a
class. Each attribute can be considered a property and each tuple can be considered
an instance. Thus, in our example, we have two instances of the class Home. Each
instance has a property city and price and the corresponding values (e.g., for Homeld

1, the value of the city property is Amsterdam).

7.6 Exposing Relational Databases 209

When performing a mapping one must also create URIs for each of the entities.
This can often be done by prepending a namespace to the beginning of the attribute or
table name. Likewise, one can often use the primary key for the URIs of each instance.
It is important to note that a main difference between relational databases and RDF is
that RDF uses URIs to identify entities, which means that everything has a globally
unique identifier. Relational databases, however, have identifiers that are unique only

within the local scope of the given database.

7.6.2 Conversion Tools

Because of the systematic mechanism by which relational databases can be mapped to
ontologies, it is possible to automate much of the conversion process. There are several
tools available, as identified by the W3C Relational Database to RDF Incubator Group
report on approaches to mapping relational databases to RDF. You can find a link to
the report in the suggested reading. Most of these tools work by analyzing the structure
of the relational database and then generating almost complete RDF. The user is then
required to modify configuration files in order to specify more appropriate URIs as well
as link to existing ontologies. For example, in our example above instead of using an

auto-generated URI for Amsterdam, one might like to use a DBpedia URL instead.

Conversion tools are often used in two capacities. One is to expose a relational
database directly as a SPARQL endpoint. The second is to convert in bulk a database
to RDF, which can then be uploaded to a triple store. This later capacity is often done
when integrating instance data with ontologies that need to be reasoned over. A good
tool to begin with is D2R Server? as it provides both capacities in a fairly simple

package.

2http:/ /www4.wiwiss.fu-berlin.de/bizer/d2r-server/.

210 Ontology Engineering

Information Access
SPARQL [Sharing] [Browsing] [Summarizing]

[Searching] [Visualizing][Organizing]

ﬁ Ontology editing]<—
N

\'4

Knowledge
Engineer

[Ontology Middleware and Reasoning]
[Ontology Repository]

Annotated Data Repository

/ A

- [E=

Figure 7.1: Semantic Web knowledge management architecture

7.7 Semantic Web Application Architecture

Building the Semantic Web not only involves using the new languages described in
this book but also a rather different style of engineering and a rather different approach
to application integration. To illustrate this, we give an overview of how a number
of Semantic Web-related tools can be integrated in a single lightweight application
architecture using Semantic Web standards to achieve interoperability between inde-

pendently engineered tools (see figure 7.1).

7.7 Semantic Web Application Architecture 211

7.7.1 Knowledge Acquisition

At the bottom of figure 7.1 we find tools that use surface analysis techniques to obtain
content from documents. These can be either unstructured natural language documents
or structured and semistructured documents (such as databases, HTML tables, and

spreadsheets).

In the case of unstructured documents, the tools typically use a combination of
statistical techniques and shallow natural language technology to extract key concepts

from documents.

In the case of more structured documents, one can use database conversion tools as
described above. Induction and pattern recognition techniques can be used to extract

the content from more weakly structured documents.

7.7.2 Knowledge Storage

The output of the analysis tools is sets of concepts, organized in a shallow concept
hierarchy with at best very few cross-taxonomical relationships, which along with RDF
and RDF Schema are sufficiently expressive to represent the extracted information.

This information also includes instance data.

Besides simply storing the knowledge produced by the extraction tools, the repos-
itory must of course provide the ability to retrieve this knowledge, preferably using
a structured query language such as SPARQL. Any reasonable RDF Schema reposi-
tory will also support the RDF model theory, which includes the deduction of class
membership based on domain and range definitions and the derivation of the transitive
closure of the subClassOf relationship.

Note that the repository will store both the ontology (class hierarchy, property def-
initions) and the instances of the ontology (specific individuals that belong to classes,

pairs of individuals between which a specific property holds).

212 Ontology Engineering

7.7.3 Knowledge Maintenance

Besides basic storage and retrieval functionality, a practical Semantic Web repository
provides functionality for managing and maintaining the ontology: change manage-
ment, access and ownership rights, and transaction management.

Besides lightweight ontologies that are automatically generated from unstructured
and semistructured data, there must be support for human engineering of much more
knowledge-intensive ontologies. Sophisticated editing environments can be used to re-
trieve ontologies from the repository, allow a knowledge engineer to manipulate them,

and place them back in the repository.

7.7.4 Knowledge Use

The ontologies and data in the repository are to be used by applications that serve
an end user. We have already described a number of such applications. In addition,
external applications may access the knowledge through the exposure of data through

one or all of the following approaches: a SPARQL endpoint, Linked Data, or RDFa.

7.7.5 Applying the Architecture

In the On-To-Knowledge project,> the architecture of figure 7.1 was implemented with
very lightweight connections between the components. Syntactic interoperability was
achieved because all components communicated in RDF. Semantic interoperability was
achieved because all semantics was expressed using RDF Schema. Physical interop-
erability was achieved because all communications between components were estab-
lished using simple HTTP connections, and all but one of the components (the ontology
editor) were implemented as remote services. When operating the On-To-Knowledge
system from Amsterdam, the ontology extraction tool, running in Norway, was given

a London-based URL of a document to analyze; the resulting RDF and RDF Schema

2*http://www.ontoknowledge.org/.

7.7 Semantic Web Application Architecture 213

were uploaded to a repository server running in Amersfoort (the Netherlands). These
data were uploaded into a locally installed ontology editor, and after editing, down-
loaded back into the Amersfoort server. The data were then used to drive a Swedish
ontology-based website generator as well as a United Kingdom-based search engine,
both displaying their results in the browser on the screen in Amsterdam.

In summary, all these tools were running remotely, were independently engineered,

and only relied on HTTP and RDF to obtain a high degree of interoperability.

7.7.6 Frameworks

There are a number of frameworks that implement the above architecture. For exam-
ple, the Drupal content management system” adds semantic support to a widely used
content management system. There are also two widely used and well-supported open
source frameworks: Jena®® and Sesame.?’ Finally, companies such as Kasabi and Dy-

dra provide hosted frameworks for building Semantic Web applications.

Zhttp://semantic-drupal.com/.
26http://jena.sourceforge.net/.
?Thttp:/ /openrdf.org.

214 Ontology Engineering

Suggested Reading

Some key papers that were used as the basis for this chapter:

e N. Noy and D. McGuinness. Ontology Development 101: A Guide to Creating
Your First Ontology.
www.ksl.stanford.edu/people/dlm/papers/ontology101/

ontology101-noy-mcguinness.html.

e B. Omelayenko. Learning of Ontologies for the Web: The Analysis of Existing
Approaches. In Proceedings of the International Workshop on Web Dynamics,
8th International Conference on Database Theory (ICDT 2001). 2001.

www.cs.vu.nl/~borys/papers/WebDyn01.pdf.

e Satya S. Sahoo, Wolfgang Halb, Sebastian Hellmann, Kingsley Idehen, Ted Thi-
bodeau Jr, Soren Auer, Juan Sequeda, and Ahmed Ezzat. A Survey of Cur-
rent Approaches for Mapping of Relational Databases to RDF (PDF). W3CW3C
RDB2RDF Incubator Group 2009-01-31.
http://www.w3.0rg/2005/Incubator/rdb2rdf/RDB2RDF _SurveyReport.pdf.

e M. Uschold and M. Gruninger. Ontologies: Principles, Methods and Applica-

tions. Knowledge Engineering Review, Volume 11, 2 (1996): 93-155.
Two often-cited books:

e J. Davies, D. Fensel, and F. van Harmelen. Towards the Semantic Web:

Ontology-Driven Knowledge Management. New York: Wiley, 2003.

e A. Maedche. Ontology Learning for the Semantic Web. New York: Springer
2002.

7.7 Semantic Web Application Architecture 215

Exercises and Projects

This project of medium difficulty can be done by two or three people in about two or
three weeks. All required software is freely available. We provide some pointers to
software that we have used successfully, but given the very active state of development
of the field, the availability of software is likely to change rapidly. Also, if certain
software is not mentioned, this does not indicate our disapproval of it.

The assignment consists of three parts.

1. In the first part, you will create an ontology that describes the domain and con-
tains the information needed by your own application. You will use the terms
defined in the ontology to describe concrete data. In this step you will be ap-
plying the methodology for ontology construction outlined in the first part of
this chapter and using OWL as a representation language for your ontology (see

chapter 4).

2. In the second part, you will use your ontology to construct different views on
your data, and you will query the ontology and the data to extract information
needed for each view. In this part, you will be applying RDF storage and query-

ing facilities (see chapter 2).

3. In the third part, you will create different graphic presentations of the extracted

data using web-based technology.

Part I. Creating an Ontology

As a first step, decide on an application domain, preferably one in which you have suf-
ficient knowledge or for which you have easy access to an expert with that knowledge.

In this description of the project, we use the domain of radio and television broad-
casting, with its programs, broadcasting schedules, channels, genres, and celebrities.

Of course, you can replace this with any domain of your choosing. In our own courses,

216 Ontology Engineering

we use different domains every year ranging from university ranking to movies and the
Fortune 500.

Second, you will build an ontology expressed in OWL that describes the domain
(for example, your faculty). The ontology does not have to cover the whole domain but
should contain at least a few dozen classes. Pay special attention to the quality (breadth,
depth) of the ontology, and aim to use as much of OWL’s expressiveness as possible.
There are a number of possible tools to use at this stage. Arguably the best current
editor is Protégé,”® but we have also had good experiences with TopBraid Composer.?’

If you are ambitious, you may even want to start your ontology development by
using ontology extraction tools from text or experimenting with tools that allow you
to import semistructured data sources, such as Excel sheets or tab-delimited files (see,
for example, Excel2RDF, ConvertToRDF, Any23, or XLWrap). Of course, you may
choose to start from some existing ontologies in this area.

Preferably, also use an inference engine to validate your ontology and to check it
for inconsistencies. If you use Protégé, you may want to exploit some of the available
plug-ins for this editor, such as multiple visualizations for your ontology or reasoning
with Pellet or HermiT.

Third, populate your ontology with concrete instances and their properties. De-
pending on the choice of editing tool, this can either be done with the same tool (Pro-
tégé) or, given the simple syntactic structure of instances in RDF, you may even decide
to write these by hand or to code some simple scripts to extract the instance informa-
tion from available sources. For example, you can convert a relational database with
the given data to RDF. Or you may want to write a scraper for some of the many web-
sites that contain information on radio and television schedules, programs, genres, and
celebrities. The BBC even offers a convenient application programming interface for

querying their schedule directly.>® You may want to use the syntax validation service

28http://protege.stanford.edu/.
2See http://topquadrant.com/products/TB_ Composer.html.
30See http://www.bbc.co.uk/programmes/developers.

7.7 Semantic Web Application Architecture 217

offered by W3C3! — this service not only validates your files for syntactic correctness
but also provides a visualization of the existing triples. Also, at this stage, you may be
able to experiment with some of the tools that allow you to import data from semistruc-
tured sources.

At the end of this step, you should be able to produce the following:
e The full OWL ontology
e Instances of the ontology, described in RDF

e A report describing the scope of the ontology and the main design decisions you

made while modeling it.

Part II. Profile Building with SPARQL Queries

Here you will use query facilities to extract relevant parts of your ontology and data.
For this you need some way of storing your ontology in a repository that supports
both query and reasoning facilities. You may use the Sesame RDF storage and query
facility,32 which comes bundled with an OWLIM reasoner. We have also found that the
Joseki Spargl Server is a nice starting point as it provides a built-in web server.

The first step is to upload your ontology (as RDF/XML or Turtle) and associated
instances to the repository. This may involve some installation effort.

Next, use the SPARQL query language to define different user profiles, and use
queries to extract the data relevant for each profile.

In the example of modeling television programs, you may choose to define viewing
guides for people with particular preferences (sports, current affairs) or viewers of
particular age groups (e.g., minors), to collect data from multiple television stations
(even across nations), to produce presentations for access over broadband or slower

mobile connections, and so on.

3lwww.w3.org/RDF/Validator/.
2www.openrdf.org/.

218 Ontology Engineering

The output of the queries that define a profile will typically be in XML or JSON

(JavaScript Object Notation).

Part III. Presenting Profile-Based Information

Use the output of the queries from part II to generate a human-readable presentation of
the different profiles. There exist several convenient libraries for querying a SPARQL
endpoint from your favorite programming language: Python has SPARQLWrapper,*
PHP has the ARC2 library,>* and Java users will like ARQ, which is part of the popular
Jena library.3> There are even libraries for visualizing SPARQL results from Javascript,
such as sgvizler.’

The challenge of this part is to define browsable, highly interlinked presentations

of the data that were generated and selected in parts I and II.

Alternative Choice of Domain

Besides using the semistructured dataset describing the broadcasting domain, it is pos-
sible to model the domain of a university faculty, with its teachers, courses, and de-
partments. In that case, you can use online sources, such as information from the
faculty’s phonebook, curriculum descriptions, teaching schedules, and so on to scrape
both ontology and instance data. Example profiles for this domain could be profiles for
students from different years, profiles for students from abroad, profiles for students

and teachers, and so on.

Conclusion

After you have finished all parts of this project, you will effectively have implemented

large parts of the architecture shown in figure 7.1. You will have used most of the

3http:/ /sparql-wrapper.sourceforge.net/.
34http://incubator.apache.org/jena/documentation/query/index.html.
3Shttp://incubator.apache.org/jena/.

36code.google.com/p/sgvizler/.

7.7 Semantic Web Application Architecture 219

languages described in this book (RDF, RDF Schema, SPARQL, OWL2), and you will
have built a genuine Semantic Web application: modeling a part of the world in an
ontology, using querying to define user-specific views on this ontology, and using web

technology to define browsable presentations of such user-specific views.

Chapter 8

Conclusion

The Semantic Web vision is a reality. As discussed in chapter 6, increasing numbers
of companies, governments, and users are adopting the set of standards, technologies,
and approaches laid out in this book. We have seen how leveraging the concepts of
the web with a flexible data model, RDF, enables the exchange and reuse of infor-
mation between applications. Based on this data model, we have seen how progres-
sively richer semantics have been added, allowing increasingly powerful inferences to
be made (chapter 2). OWL2 (chapter 4) allows for rich knowledge representations to
be built and rule languages (chapter 5) allow application-specific inferences to be sys-
tematically encoded. All this information is made available through a web-integrated
query language SPARQL (chapter 3). Finally, we have seen how ontology engineer-
ing methods can be applied to use these technologies in the creation of smarter, more

advanced applications (chapter 6).

Throughout this book, we have seen how these technologies and techniques are
grounded in knowledge brought from a wide variety of computer science disciplines
including Aurtificial Intelligence, Databases, and Distributed Systems, and pointed to

places for further study of all the material given here. The reader is encouraged to

221

222 Conclusion

study these areas in more depth.

8.1 Principles

The study of the Semantic Web is not only a study in applications or technologies; it
also provides a set of general principles that are useful in designing systems even when

they do not use Semantic Web approaches. We revisit them again here:

8.1.1 Provide a Path from Lightweight to Heavyweight Technology

Developers and users need simple entry points into technology but also the ability to
add more complexity as their needs grow. This notion of a transition path has been
successfully applied in the Semantic Web. For example, one can start off with a simple
data model in RDF and transition to the richer and more powerful language of OWL.
Even in OWL one has a range of choices, from simple rule versions that enable fast

inference to the complex descriptions of OWL2 Full.

8.1.2 Standards Save Time

The web and likewise the Semantic Web are facilitated by standards. These standards
mean that consumers of information do not have to worry about adapting to every new
producer of information. Likewise, producers know that they are giving consumers
what they want. There is no need to reinvent syntaxes or models. In the Semantic
Web, standards make possible the reuse of information. If I want information about
Amsterdam in my application, I no longer have to collect it myself but can build my
application on top of all the information available in Wikipedia (in its RDF representa-
tion, DBPedia). This ability to reuse saves time in the development and integration of
applications. The Semantic Web community is continuing to learn the benefits of stan-

dards. Increasingly, there is a move to not only standardize formats and technologies

8.1 Principles 223

but also ontologies and other content.

8.1.3 Linking Is Vital

The power of the Semantic Web, like the web, is in its links. Links enable knowledge
to be distributed across organizations, people, and systems. It enables those who care
about knowledge the most to tend to it while still enabling others to access it and find it.
Links are lightweight enough to be easily created, while still strong enough to allow for
the integration of knowledge. We see this in the Linked Data Cloud where hundreds of
specialized datasets can rely on other specialized datasets to provide (in a simple way)
more and detailed knowledge about a topic or concept. It seems reasonable to say that

in any large information system, the ability to link can predict its success or failure.

8.1.4 A Little Semantics Goes a Long Way

One of the visionaries of the Semantic Web, Jim Hendler, coined the term “A little
semantics goes a long way.” This phrase emphasizes the importance of the ability
to automatically understand the meaning of terms. Sharing data is not enough — one
needs to share meaning. Simply knowing that a bank refers to a chair and not a financial
institution goes a tremendous way in enabling sophisticated systems. Throughout this
book, we have described techniques for adding semantics to data and making use of
that in applications. Whether one adopts these particular technologies in a system is
one thing, but a key principle to recognize is that semantics can be a differentiating

ingredient.

The principles above have helped make the Semantic Web a success but more im-
portantly they are applicable in the design of any large-scale software system or set of

technologies.

224 Conclusion

8.2 Where Next?

The Semantic Web is still growing and changing. Existing technologies are being
refined and new ones are being developed. Broadly speaking, there seem to be several

major research directions that are actively being studied:

e Reasoning in context. This is the ability to make inferences depending not only
on the knowledge given but also on the situation the application is in or where
the knowledge came from (its provenance). For example, you may trust a given
data source about apartments if you are just at the beginning of your apartment

hunt, but not when it comes down to making a final decision.

e [arge-scale reasoning. As the amount of data on the Semantic Web has grown,
the ability to reason with it has become more difficult. Projects like the Large
Knowledge Collidor (http://www.larkc.eu) have shown the ability to do simple
rule-style reasoning with billions of triples. However, as the complexity of the
semantics grows and the amount of data and knowledge continues to explode,

there will be a need for better and faster reasoners.

e Distributed querying. Standard practice today for using distributed sources of
knowledge on the Semantic Web is to centralize the knowledge by capturing it
from its various sources. This is done for purposes of efficiency. However, it
still an open question as to how to use, and in particular query, these distributed

sources of information without the need for centralization.

e Streaming knowledge. Semantic Web technologies primarily deal with static
or slowly changing information. This situation is rapidly changing as infor-
mation is being produced by sensors, microblogging, and other sources at an
ever-increasing pace. There are open questions about how to extract, reason, and

make use of semantics from such streaming data sources.

8.2 Where Next? 225

These are just some of the current research directions being pursued with re-
spect to the Semantic Web. The field itself and its technologies are rapidly chang-
ing. While this book provides a core basis, the conclusion to the Semantic Web is
far from being written. To read the current story, please see the online supplement:

http://www.semanticwebprimer.org.

Appendix A

XML Basics

A.1 The XML Language

An XML document consists of a prolog, a number of elements, and an optional epilog

(not discussed here).

A.1.1 Prolog

The prolog consists of an XML declaration and an optional reference to external struc-

turing documents. Here is an example of an XML declaration:
<?xml version="1.0" encoding="UTF-16"7>

It specifies that the current document is an XML document, and defines the version and
the character encoding used in the particular system (such as UTF-8, UTF-16, and ISO
8859-1). The character encoding is not mandatory, but its specification is considered
good practice. Sometimes we also specify whether the document is self-contained —

that is, whether it does not refer to external structuring documents:

<?ml version="1.0" encoding="UTF-16" standalone="no"7>

227

228 XML Basics

A reference to external structuring documents looks like this:

<IDOCTYPE book SYSTEM "book.dtd">

Here the structuring information is found in a local file called book.dtd. Instead, the
reference might be a URL. If only a locally recognized name or only a URL is used,
then the label SYSTEM is used. If, however, one wishes to give both a local name and

a URL, then the label PUBLIC should be used instead.

A.1.2 Elements

XML elements represent the “things” the XML document talks about, such as books,
authors, and publishers. They compose the main concept of XML documents. An

element consists of an opening tag, its content, and a closing tag. For example,
<lecturer>David Billington< /lecturer>

Tag names can be chosen almost freely; there are very few restrictions. The most
important restrictions are that the first character must be a letter, an underscore, or a
colon, and that no name may begin with the string “xml” in any combination of cases
(such as “Xml” and “xML”).

The content may be text, other elements, or nothing. For example,

<lecturer>
<name>David Billington< /name>
<phone>+61-7-3875 507< /phone>

< /lecturer>
If there is no content, then the element is called empty. An empty element like
<lecturer>< /lecturer>
can be abbreviated as

<lecturer/>

A.1 The XML Language 229

A.1.3 Attributes

An empty element is not necessarily meaningless, because it may have some properties
in terms of attributes. An attribute is a name-value pair inside the opening tag of an

element:

<lecturer name="David Billington" phone="+61-7-3875 507" />

Here is an example of attributes for a nonempty element:

<order orderNo="23456" customer="John Smith"
date="October 15, 2002" >
<item itemNo="a528" quantity="1"/>
<item itemNo="c817" quantity="3"/>

< [order>

The same information could have been written as follows, replacing attributes with

nested elements:

<order>
<orderNo>23456< /orderNo>
<customer>John Smith</customer>
<date>October 15, 2002< /date>
<item>
<itemNo>a528< /itemNo>
<quantity>1</quantity>
< /item>
<item>
<itemNo>c817< /itemNo>
<quantity>3</quantity>
< /item>

< /order>

230 XML Basics

When to use elements and when attributes is often a matter of taste. However, note that

attributes cannot be nested.

A.1.4 Comments

A comment is a piece of text that is to be ignored by the parser. It has the form

<l-- This is a comment -->

A.1.5 Processing Instructions (PIs)

PIs provide a mechanism for passing information to an application about how to handle

elements. The general form is

< ?target instruction?>

For example,

<7stylesheet type="text/css" href="mystyle.css"?>

PIs offer procedural possibilities in an otherwise declarative environment.

A.1.6 Well-Formed XML Documents

An XML document is well-formed if it is syntactically correct. The following are some

syntactic rules:

There is only one outermost element in the document (called the root element).

Each element contains an opening and a corresponding closing tag.

e Tags may not overlap, as in

<author><name>Lee Hong</author></name>.

Attributes within an element have unique names.

Element and tag names must be permissible.

A.1 The XML Language 231

A.1.7 Tree Model of XML Documents

It is possible to represent well-formed XML documents as trees; thus trees provide a
formal data model for XML. This representation is often instructive. As an example,

consider the following document:

<?xml version="1.0" encoding="UTF-16"7>
<IDOCTYPE email SYSTEM "email.dtd" >
<email>
<head>
<from name="Michael Maher"
address="michaelmaher@cs.gu.edu.au" />
<to name="Grigoris Antoniou"
address="grigoris@cs.unibremen.de" />
<subject>Where is your draft?</subject>
< /head>
<body>
Grigoris, where is the draft of the paper
you promised me last week?
< /body>

< /email>

Figure A.1 shows the tree representation of this XML document. It is an ordered,

labeled tree:

e There is exactly one root.

e There are no cycles.

Each node, other than the root, has exactly one parent.

Each node has a label.

The order of elements is important.

232 XML Basics

However, while the order of elements is important, the order of attributes is not. So,

the following two elements are equivalent:

<person lastname="Woo" firstname="Jason" />

<person firstname="Jason" lastname="Woo" />

This aspect is not represented properly in the tree. In general, we would require a more
refined tree concept; for example, we should also differentiate between the different
types of nodes (element node, attribute node, etc.). However, here we use graphs as

illustrations, so we do not go into further detail.

Figure A.1 also shows the difference between the root (representing the XML doc-
ument), and the root element, in our case the email element. This distinction will play

arole when we discuss addressing and querying XML documents.

Grigoris,
where is the

: draft of the

h \ | | paper you
Michael Grigoris Where is4 promised me

michaelmaher@
cs.gu.edu.au

grigoris@

Maher Antoniou cs.unibremen.de your draft last week?

Figure A.1: Tree representation of an XML document

A.2 Structuring 233

A.2 Structuring

An XML document is well-formed if it respects certain syntactic rules. However, those
rules say nothing specific about the structure of the document. Now, imagine two
applications that try to communicate, and that wish to use the same vocabulary. For
this purpose it is necessary to define all the element and attribute names that may be
used. Moreover, the structure should also be defined: what values an attribute may
take, which elements may or must occur within other elements, and so on.

In the presence of such structuring information we have an enhanced possibility of
document validation. We say that an XML document is valid if it is well-formed, uses
structuring information, and respects that structuring information.

There are two ways of defining the structure of XML documents: DTDs, the older
and more restricted way, and XML Schema, which offers extended possibilities, mainly

for the definition of data types.

A.2.1 DTDs
External and Internal DTDs

The components of a DTD can be defined in a separate file (external DTD) or within
the XML document itself (internal DTD). Usually it is better to use external DTDs,
because their definitions can be used across several documents; otherwise duplication

is inevitable, and the maintenance of consistency over time becomes difficult.

Elements

Consider the element

<lecturer>
<name>David Billington</name>
<phone>+61-7-3875 507< /phone>

< /lecturer>

234 XML Basics

from the previous section. A DTD for this element type' looks like this:

<IELEMENT lecturer (name,phone)>
<IELEMENT name (#PCDATA)>
<IELEMENT phone (#PCDATA)>

The meaning of this DTD is as follows:

e The element types lecturer, name, and phone may be used in the document.

e A lecturer element contains a name element and a phone element, in that order.

e A name element and a phone element may have any content. In DTDs,

#PCDATA is the only atomic type for elements.

We express that a lecturer element contains either a name element or a phone element

as follows:

<IELEMENT lecturer (name|phone)>

It gets more difficult when we wish to specify that a lecturer element contains a name

element and a phone element in any order. We can only use the trick

<IELEMENT lecturer ((name,phone)|(phone,name))>

However, this approach suffers from practical limitations (imagine ten elements in any

order).

Attributes

Consider the element

The distinction between the element type lecturer and a particular element of this type, such as David
Billington, should be clear. All particular elements of type lecturer (referred to as lecturer elements) share
the same structure, which is defined here.

A.2 Structuring

235

<order orderNo="23456" customer="John Smith"

date="October 15, 2002" >

<item itemNo="a528" quantity="1"/>

<item itemNo="c817" quantity="3"/>

< Jorder>

from the previous section. A DTD for it looks like this:

<IELEMENT order (item+)>
<IATTLIST order
orderNo ID #REQUIRED
customer CDATA #REQUIRED
date CDATA #REQUIRED>
<IELEMENT item EMPTY>
<IATTLIST item
itemNo ID #REQUIRED
quantity CDATA #REQUIRED
comments CDATA #IMPLIED>

Compared to the previous example, a new aspect is that the item element type is defined

to be empty. Another new aspect is the appearance of + after item in the definition of

the order element type. It is one of the cardinality operators:

7: appears zero times or once.
*: appears zero or more times.

+: appears one or more times.

No cardinality operator means exactly once.

In addition to defining elements, we have to define attributes. This is done in an

attribute list. The first component is the name of the element type to which the list

236 XML Basics

applies, followed by a list of triplets of attribute name, attribute type, and value type.

An attribute name is a name that may be used in an XML document using a DTD.

Attribute Types

Attribute types are similar to predefined data types, but the selection is very limited.

The most important attribute types are

CDATA, a string (sequence of characters),

ID, a name that is unique across the entire XML document,

IDREF, a reference to another element with an ID attribute carrying the same

value as the IDREF attribute,

IDREFS, a series of IDREFs,

(v1] ... |vn), an enumeration of all possible values.

The selection is not satisfactory. For example, dates and numbers cannot be specified;
they have to be interpreted as strings (CDATA); thus their specific structure cannot be

enforced.

Value Types

There are four value types:

o #REQUIRED. The attribute must appear in every occurrence of the element
type in the XML document. In the previous example, itemNo and quantity must

always appear within an item element.

e #IMPLIED. The appearance of the attribute is optional. In the example, com-

ments are optional.

A.2 Structuring 237

o #FIXED "value". Every element must have this attribute, which always has the
value given after #FIXED in the DTD. A value given in an XML document is

meaningless because it is overridden by the fixed value.

e "value". This specifies the default value for the attribute. If a specific value
appears in the XML document, it overrides the default value. For example, the
default encoding of the email system may be “mime”, but “binhex” will be used

if specified explicitly by the user.

Referencing

Here is an example for the use of IDREF and IDREFS. First we give a DTD:

<IELEMENT family (person*)>
<IELEMENT person (name)>
<IELEMENT name (#PCDATA)>

<IATTLIST person

id ID #REQUIRED
mother IDREF #IMPLIED
father IDREF #IMPLIED

children IDREFS #IMPLIED>

An XML element that respects this DTD is the following:

<family>

<person id="bob" mother="mary" father="peter">
<name>Bob Marley</name>

< /person>

<person id="bridget" mother="mary">

<name>Bridget Jones</name>

238 XML Basics

< /person>

<person id="mary" children="bob bridget">
<name>Mary Poppins</name>

< /person>

<person id="peter" children="bob">
<name>Peter Marley< /name>

< /person>

< /family>

Readers should study the references between persons.

XML Entities

An XML entity can play several roles, such as a placeholder for repeatable characters
(a type of shorthand), a section of external data (e.g., XML or other), or as a part of a
declaration for elements. For example, suppose that a document has several copyright

notices that refer to the current year. Then it makes sense to declare an entity

<IENTITY thisyear "2007" >

Then, at each place the current year needs to be included, we can use the entity ref-
erence &thisyear; instead. That way, updating the year value to “2008” for the whole
document will only mean changing the entity declaration.

A Concluding Example

As a final example we give a DTD for the email element presented previously:

<IELEMENT email (head,body)>
<IELEMENT head (from,to+,cc* subject)>

A.2 Structuring 239

<!ELEMENT from EMPTY>
<IATTLIST from
name CDATA #IMPLIED
address CDATA #REQUIRED>
<!ELEMENT to EMPTY>
<IATTLIST to
name CDATA #IMPLIED
address CDATA #REQUIRED >
<!ELEMENT cc EMPTY>
<IATTLIST cc
name CDATA #IMPLIED
address CDATA #REQUIRED>
<IELEMENT subject (#PCDATA)>
<IELEMENT body (text,attachment*)>
<IELEMENT text (#PCDATA)>
<IELEMENT attachment EMPTY>
<IATTLIST attachment
encoding (mime|binhex) "mime"

file CDATA #REQUIRED>

We go through some interesting parts of this DTD:

e A head element contains a from element, at least one to element, zero or more

cc elements, and a subject element, in that order.

In from, to, and cc elements the name attribute is not required; the address at-

tribute, on the other hand, is always required.

A body element contains a text element, possibly followed by a number of

attachment elements.

The encoding attribute of an attachment element must have either the value

240 XML Basics

“mime” or “binhex”, the former being the default value.

We conclude with two more remarks on DTDs. First, a DTD can be interpreted as an

Extended Backus-Naur Form (EBNF). For example, the declaration

<IELEMENT email (head,body)>

is equivalent to the rule

email ::= head body

which means that an email consists of a head followed by a body. And second, recursive

definitions are possible in DTDs. For example,

<IELEMENT bintree ((bintree root bintree)|emptytree)>

defines binary trees: a binary tree is the empty tree, or consists of a left subtree, a root,

and a right subtree.

A.2.2 XML Schema

XML Schema offers a significantly richer language for defining the structure of XML
documents. One of its characteristics is that its syntax is based on XML itself. This
design decision provides a significant improvement in readability, but more important,
it also allows significant reuse of technology. It is no longer necessary to write separate
parsers, editors, pretty printers, and so on to obtain a separate syntax, as was required
for DTDs; any XML will do. An even more important improvement is the possibility
of reusing and refining schemas. XML Schema allows one to define new types by
extending or restricting already existing ones. In combination with an XML-based
syntax, this feature allows one to build schemas from other schemas, thus reducing the
workload. Finally, XML Schema provides a sophisticated set of data types that can be
used in XML documents (DTDs were limited to strings only).

An XML schema is an element with an opening tag like

A.2 Structuring 241

<xsd:schema
xmlns:xsd="http://www.w3.0rg/2000/10/XMLSchema"

version="1.0">

The element uses the schema of XML Schema found at the W3C website. It is, so
to speak, the foundation on which new schemas can be built. The prefix xsd denotes
the namespace of that schema (more on namespaces in the next section). If the prefix
is omitted in the xmlns attribute, then we are using elements from this namespace by

default:

<schema
xmlns="http://www.w3.0rg/2000/10/XMLSchema"

version="1.0">

In the following we omit the xsd prefix.
Now we turn to schema elements. Their most important contents are the definitions

of element and attribute types, which are defined using data types.

Element Types

The syntax of element types is
<element name="..."/>
and they may have a number of optional attributes, such as types,
type="..."
or cardinality constraints
e minOccurs="x", where x may be any natural number (including zero),

e maxOccurs="x", where x may be any natural number (including zero) or

unbounded.

242 XML Basics

minOccurs and maxOccurs are generalizations of the cardinality operators 7, *, and +,
offered by DTDs. When cardinality constraints are not provided explicitly, minOccurs
and maxQOccurs have value 1 by default.

Here are a few examples.

<element name="email" />

<element name="head" minOccurs="1" maxOccurs="1"/>

<element name="to" minOccurs="1"/>

Attribute Types
The syntax of attribute types is
<attribute name="..."/>
and they may have a number of optional attributes, such as types,
type="..."
or existence (corresponds to #OPTIONAL and #IMPLIED in DTDs),
T

use="x", where x may be optional or required or prohibited,

or a default value (corresponds to #FIXED and default values in DTDs).

Here are examples:

<attribute name="id" type="ID" use="required" />

<attribute name="speaks" type="Language" use="optional"

default="en" />

A.2 Structuring 243

Data Types

We have already recognized the very restricted selection of data types as a key weak-
ness of DTDs. XML Schema provides powerful capabilities for defining data type.

First there is a variety of built-in data types. Here we list a few:

e Numerical data types, including integer, short, Byte, long, float, decimal
e String data types, including string, ID, IDREF, CDATA, language

e Date and time data types, including time, date, gMonth, gYear

There are also user-defined data types, comprising simple data types, which cannot
use elements or attributes, and complex data types, which can use elements and at-
tributes. We discuss complex types first, deferring discussion of simple data types until
we talk about restriction. Complex types are defined from already existing data types

by defining some attributes (if any) and using

e sequence, a sequence of existing data type elements, the appearance of which in

a predefined order is important,

e all, a collection of elements that must appear but the order of which is not impor-

tant,

e choice, a collection of elements, of which one will be chosen.

Here is an example:

<complexType name="lecturerType" >
<sequence>
<element name="firstname" type="string"
minOccurs="0" maxOccurs="unbounded" />
<element name="lastname" type="string" />

< /sequence>

244 XML Basics

<attribute name="title" type="string" use="optional"/>

< /complexType>

The meaning is that an element in an XML document that is declared to be of type
lecturerType may have a title attribute; it may also include any number of firstname

elements and must include exactly one lastname element.

Data Type Extension

Already existing data types can be extended by new elements or attributes. As an

example, we extend the lecturer data type.

<complexType name="extendedLecturerType" >
<complexContent>
<extension base="lecturerType">
<sequence>
<element name="email" type="string"
minOccurs="0" maxOccurs="1"/>
< /sequence>
<attribute name="rank" type="string" use="required" />
< [extension>
< /complexContent>

< /complexType>

In this example, lecturerType is extended by an email element and a rank attribute.

The resulting data type looks like this:

<complexType name="extendedLecturerType" >
<sequence>
<element name="firstname" type="string"
minOccurs="0" maxOccurs="unbounded" />

<element name="lastname" type="string" />

A.2 Structuring 245

<element name="email" type="string"
minOccurs="0" maxOccurs="1"/>
< /sequence>
<attribute name="title" type="string" use="optional" />
<attribute name="rank" type="string" use="required" />

< /complexType>

A hierarchical relationship exists between the original and the extended type. Instances
of the extended type are also instances of the original type. They may contain additional

information, but neither less information nor information of the wrong type.

Data Type Restriction

An existing data type may also be restricted by adding constraints on certain values.
For example, new type and use attributes may be added, or the numerical constraints
of minOccurs and maxOccurs tightened.

It is important to understand that restriction is not the opposite process of extension.
Restriction is not achieved by deleting elements or attributes. Therefore, the following
hierarchical relationship still holds: Instances of the restricted type are also instances
of the original type. They satisfy at least the constraints of the original type and some
new ones.

As an example, we restrict the lecturer data type as follows:

<complexType name="restrictedLecturerType" >
<complexContent>
<restriction base="lecturerType" >
<sequence>
<element name="firstname" type="string"
minOccurs="1" maxOccurs="2"/>
< /sequence>

<attribute name="title" type="string" use="required" />

246 XML Basics

< [restriction>
< /complexContent>

< /complexType>

The tightened constraints are shown in boldface. Readers should compare them with
the original ones.
Simple data types can also be defined by restricting existing data types. For exam-

ple, we can define a type dayOfMonth that admits values from 1 to 31 as follows:

<simpleType name="dayOfMonth" >
<restriction base="integer" >
<minlnclusive value="1"/>
<maxlInclusive value="31"/>
< /restriction>

< /simpleType>

It is also possible to define a data type by listing all the possible values. For example,

we can define a data type dayOfWeek as follows:

<simpleType name="dayOfWeek" >

<restriction base="string" >
<enumeration value="Mon" />
<enumeration value="Tue" />
<enumeration value="Wed" />
<enumeration value="Thu"/>
<enumeration value="Fri" />
<enumeration value="Sat" />
<enumeration value="Sun"/>

< /restriction>

< /simpleType>

A.2 Structuring 247

A Concluding Example

Here we define an XML schema for email, so that it can be compared to the DTD

provided earlier.

<element name="email" type="emailType" />
<complexType name="emailType" >
<sequence>
<element name="head" type="headType" />
<element name="body" type="bodyType" />
< /sequence>

< /complexType>

<complexType name="head Type" >
<sequence>
<element name="from" type="nameAddress" />
<element name="to" type="nameAddress"
minOccurs="1" maxOccurs="unbounded" />
<element name="cc" type="nameAddress"
minOccurs="0" maxOccurs="unbounded" />
<element name="subject" type="string" />
< /sequence>

< /complexType>

<complexType name="nameAddress" >
<attribute name="name" type="string" use="optional"/>
<attribute name="address" type="string" use="required" />

< /complexType>

<complexType name="bodyType" >

<sequence>

248 XML Basics

<element name="text" type="string"/>
<element name="attachment" minOccurs="0"
maxOccurs="unbounded" >
<complexType>
<attribute name="encoding" use="optional"
default="mime" >
<simpleType>
<restriction base="string" >
<enumeration value="mime" />
<enumeration value="binhex"/>
< /restriction>
< /simpleType>
< /attribute>
<attribute name="file" type="string"
use="required" />
< /complexType>
< [element>
< /sequence>

< /complexType>

Note that some data types are defined separately and given names, while others are
defined within other types and defined anonymously (the types for the attachment ele-
ment and the encoding attribute). In general, if a type is used only once, it makes sense
to define it anonymously for local use. However, this approach reaches its limitations

quickly if nesting becomes too deep.

A.3 Namespaces

One of the main advantages of using XML as a universal (meta) markup language is

that information from various sources may be accessed; in technical terms, an XML

A.3 Namespaces 249

document may use more than one DTD or schema. But since each structuring docu-
ment is developed independently, name clashes appear inevitable. If DTD A and DTD
B define an element type e in different ways, a parser trying to validate an XML doc-
ument in which an e element appears must be told which DTD to use for validation
purposes.

The technical solution is simple: disambiguation is achieved by using a different

prefix for each DTD or schema. The prefix is separated from the local name by a colon:

prefix:name

As an example, consider an (imaginary) joint venture of an Australian university, say,
Griffith University, and an American university, say, the University of Kentucky, to
present a unified view for online students. Each university uses its own terminology,
and there are differences. For example, lecturers in the United States are not consid-
ered regular faculty, whereas in Australia they are (in fact, they correspond to assistant
professors in the United States). The following example shows how disambiguation

can be achieved.

<?xml version="1.0" encoding="UTF-16"7>
<vu:instructors
xmins:vu="http://www.vu.com/empDTD"
xmlns:gu="http://www.gu.au/empDTD"
xmlns:uky="http://www.uky.edu/empDTD" >
<uky:faculty
uky:title="assistant professor"
uky:name="John Smith"
uky:department="Computer Science" />
<gu:academicStaff
gu:title="lecturer"
gu:name="Mate Jones"

gu:school="Information Technology" />

250 XML Basics

< /vu:instructors>

So, namespaces are declared within an element and can be used in that element and

any of its children (elements and attributes). A namespace declaration has the form:

xmlns:prefix="location"

where location may be the address of the DTD or schema. If a prefix is not specified,

as in

xmlns="location"

then the location is used by default. For example, the previous example is equivalent

to the following document:

<?xml version="1.0" encoding="UTF-16"7>
<vu:instructors
xmlns:vu="http://www.vu.com/empDTD"
xmlns="http://www.gu.au/empDTD"
xmlns:uky="http://www.uky.edu/empDTD" >
<uky:faculty
uky:title="assistant professor"
uky:name="John Smith"
uky:department="Computer Science" />
<academicStaff
title="lecturer"
name="Mate Jones"
school="Information Technology" />

< /vu:instructors>

A.4 Addressing and Querying XML Documents 251

A.4 Addressing and Querying XML Documents

In relational databases, parts of a database can be selected and retrieved using query
languages such as SQL. The same is true for XML documents, for which there exist a
number of proposals for query languages, such as XQL, XML-QL, and XQuery.

The central concept of XML query languages is a path expression that specifies
how a node, or a set of nodes, in the tree representation of the XML document can be
reached. We introduce path expressions in the form of XPath because they can be used
for purposes other than querying— namely, for transforming XML documents.

XPath is a language for addressing parts of an XML document. It operates on
the tree data model of XML and has a non-XML syntax. The key concepts are path

expressions. They can be

e absolute (starting at the root of the tree); syntactically they begin with the symbol
/, which refers to the root of the document, situated one level above the root

element of the document; or

e relative to a context node.
Consider the following XML document:

<?xml version="1.0" encoding="UTF-16"7>
<!DOCTYPE library PUBLIC "library.dtd" >
<library location="Bremen">
<author name="Henry Wise" >
<book title="Atrtificial Intelligence" />
<book title="Modern Web Services" />
<book title="Theory of Computation" />
< /author>
<author name="William Smart">

<book title="Artificial Intelligence" />

252 XML Basics

< /author>
<author name="Cynthia Singleton">

<book title="The Semantic Web" />

<book title="Browser Technology Revised" />
< /author>

< /library>

Its tree representation is shown in figure A.2.
In the following we illustrate the capabilities of XPath with a few examples of path

expressions.

1. Address all author elements.

/library/author

This path expression addresses all author elements that are children of the library
element node, which resides immediately below the root. Using a sequence
Jt1/ ... /tn, where each t;;1 is a child node of t;, we define a path through

the tree representation.

2. An alternative solution for the previous example is

/ /author

Here // says that we should consider all elements in the document and check
whether they are of type author. In other words, this path expression addresses
all author elements anywhere in the document. Because of the specific structure
of our XML document, this expression and the previous one lead to the same

result; however, they may lead to different results, in general.

3. Address the location attribute nodes within library element nodes.

/library/@location

253

A.4 Addressing and Querying XML Documents

pasTAdY
KboTouyoal
Iasmoag

qom
oTjuRWeS
oy,

\
\

!
!

\ 1
\ /

oo (o) Cad

2ouabTTTO3UT
TeTOTITIIV

uo3eTbuts
eTy3luid

7

’
’

’

1
|
1
1
JxRUWS
Gua) | wertr
7
/
/
/
/

uoT3ezndwo)

S9OTAISS
qem
UISPON

sousbTTTo3UT
TeToTITIIVY

1
1

/
/

usuaIg

Figure A.2: Tree representation of a library document

254 XML Basics
The symbol @ is used to denote attribute nodes.
4. Address all title attribute nodes within book elements anywhere in the document
that have the value “Artificial Intelligence” (see figure A.3).
//book/@title=[.="Artificial Intelligence"]
5. Address all books with title “Artificial Intelligence” (see figure A.4).
//book[@title="Atrtificial Intelligence"]
We call a test within square brackets a filter expression. It restricts the set of
addressed nodes. Note the difference between this expression and the one in
query 4. Here we address book elements the title of which satisfies a certain
condition. In query 4 we collected title attribute nodes of book elements. A
comparison of figures A.3 and A.4 illustrates the difference.
6. Address the first author element node in the XML document.
//author[1]
7. Address the last book element within the first author element node in the docu-

ment.

//author[1]/book][last()]

8. Address all book element nodes without a title attribute.

//book[not (@title)]

These examples are meant to give a feeling of the expressive power of path expressions.

In general, a path expression consists of a series of steps separated by slashes. A step

consists of an axis specifier, a node test, and an optional predicate.

255

A.4 Addressing and Querying XML Documents

pasTAdY a=M uoT3eInduo) 9D0TAISS
ABoTouyoal oTaueWSS S0uUSBTTTo3UTL JO qeM SousbTTTo3UL
Iosmoag a2yl TeTOTITIAY KAxosyL UISPON TeTPTITIAY

\ 1 | \ | !
\ 1 \ | 1

1 /

1 '

7

1
\ ! | |
\ ! 1 |
uo3laTbuts qxews S9STM
7
/
’

7) ¥)
L]] /
// . / ' \
CORCIRCD) Croon) G Goot) oot o) Caum)
‘
A) .
+ e
<, (o) Goun)
A) \\
A)
*
A *
. Py
A) *
. o
+ *
A) \“
A)
A} \‘
. o?
N @

uswaig

Figure A.3: Tree representation of query 4

XML Basics

256

pasTAdY
KboTouyoar,
Tosmoxd

qem
oT Jjueuwss
ouL

\
\
\

!
!
1

\ /

@ousbTTTO3UT
TeToTITIAV

uoj3aTbhutrs
eTY3uLd

7
’
’
’

oot (o) G

|
|

|
1
JxeUS
e weTTTTM
7
/

/
’

’
+
A)
.

uoT3e3zndwo)
30
Kxoayg

S9OTAISS
oM
UISPON

oDULbhTTTo3UT
TeToTITIIVY

1
1
/

\ /

9STM
Kxusn

’
’
’

’
’
L)

e

uswaxg

f query 5

10n O

Tree representati

Figure A.4

A.5 Processing 257

e An axis specifier determines the tree relationship between the nodes to be ad-
dressed and the context node. Examples are parent, ancestor, child (the default),
sibling, and attribute node. // is such an axis specifier; it denotes descendant or

self.

e A node test specifies which nodes to address. The most common node tests are
element names (which may use namespace information), but there are others.
For example, * addresses all element nodes, comment() all comment nodes, and

SO Oon.

e Predicates (or filter expressions) are optional and are used to refine the set
of addressed nodes. For example, the expression [1] selects the first node,
[position()=last()] selects the last node, [position() mod 2 = 0] the even nodes,

and so on.

We have only presented the abbreviated syntax, but XPath actually has a more compli-

cated full syntax. References are found at the end of this appendix.

A.5 Processing

So far we have not provided any information about how XML documents can be dis-
played. Such information is necessary because unlike HTML documents, XML doc-
uments do not contain formatting information. The advantage is that a given XML
document can be presented in various ways when different style sheets are applied to

it. For example, consider the XML element

<author>
<name>Grigoris Antoniou</name>
<affiliation>University of Bremen</affiliation>
<email>ga@tzi.de< /email >

< /author>

258 XML Basics

The output might look like the following, if a style sheet is used:

Grigoris Antoniou
University of Bremen

ga@tzi.de

Or it might appear as follows, if a different style sheet is used:

Grigoris Antoniou
University of Bremen

ga@tzi.de

Style sheets can be written in various languages, such as CSS2 (cascading style sheets
level 2). The other possibility is XSL (extensible stylesheet language).

XSL includes both a transformation language (XSLT) and a formatting language.
Each of these is, of course, an XML application. XSLT specifies rules with which an
input XML document is transformed to another XML document, an HTML document,
or plain text. The output document may use the same DTD or schema as the input
document, or it may use a completely different vocabulary.

XSLT (XSL transformations) can be used independently of the formatting lan-
guage. Its ability to move data and metadata from one XML representation to another
makes it a most valuable tool for XML-based applications. Generally XSLT is chosen
when applications that use different DTDs or schemas need to communicate. XSLT is
a tool that can be used for machine-processing of content without any regard to dis-
playing the information for people to read. Despite this fact, in the following we use
XSLT only to display XML documents.

One way of defining the presentation of an XML document is to transform it into
an HTML document. Here is an example. We define an XSLT document that will be

applied to the author example.

A.5 Processing 259

<?xml version="1.0" encoding="UTF-16"7>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" >

<xsl:template match="/author">
<html>
<head> <title>An author< /title></head>
<body bgcolor="white" >
<xsl:value-of select="name"/>
</br>
<xsl:value-of select="affiliation" />
</br>
<i><xsl:value-of select="email"/></i>
< /body>
</html>
< /xsl:template>

< /xsl:stylesheet>

The output of this style sheet, applied to the previous XML document, produces the

following HTML document (which now defines the presentation):

<html>
<head><title>An author< /title></head>
<body bgcolor="white" >
Grigoris Antoniou

University of Bremen

<i>gaOtzi.de</i>
< /body>

</html>

Let us make a few observations. XSLT documents are XML documents. So XSLT
resides on top of XML (that is, it is an XML application). The XSLT document defines

a template; in this case an HTML document, with some placeholders for content to be

260 XML Basics

<html>
<head><title>An author</title></head>
<body bgcolor="white">

...

. .

<i>...</i>
</body>
</html>

Figure A.5: A template

inserted (see figure A.5).
In the previous XSLT document, xsl:value-of retrieves the value of an element and
copies it into the output document. That is, it places some content into the template.
Now suppose we had an XML document with details of several authors. It would
clearly be a waste of effort to treat each author element separately. In such cases, a
special template is defined for author elements, and is used by the main template. We

illustrate this approach in the following input document:

<authors>

<author>
<name>Grigoris Antoniou< /name>
<affiliation>University of Bremen</affiliation>
<email>ga0tzi.de< /email >

< /author>

<author>
<name>David Billington</name>
<affiliation>Griffith University</affiliation>
<email>david@gu.edu.net< /email>

< /author>

< /authors>

A.5 Processing 261

We define the following XSLT document:

<?xml version="1.0" encoding="UTF-16"7>
<xsl:stylesheet version="1.0"

xmins:xsl="http://www.w3.org/1999/XSL/Transform" >

<xsl:template match="/">
<html>
<head><title>Authors< /title></head>
<body bgcolor="white">
<xsl:apply-templates select="authors" />
<!-- Apply templates for AUTHORS children -->
</body>
</html>

< /xsl:template>

<xsl:template match="authors" >
<xsl:apply-templates select="author" />

< [xsl:template>

<xsl:template match="author" >
<h2><xsl:value-of select="name"/></h2>
Affiliation: <xsl:value-of select="affiliation" />

Email: <xsl:value-of select="email" />
<p>

< /xsl:template>

< /xsl:stylesheet>

The output produced is

<html>

<head> <title>Authors< /title></head>

262 XML Basics

<body bgcolor="white">
<h2>Grigoris Antoniou</h2>
Affiliation: University of Bremen

Email: ga®tzi.de
<p>
<h2>David Billington</h2>
Affiliation: Griffith University

Email: david@gu.edu.net
<p>

</body>

</html>

The xsl:apply-templates element causes all children of the context node to be matched
against the selected path expression. For example, if the current template applies to /
(that is, if the current context node is the root), then the element xsl:apply-templates
applies to the root element, which in this case is the authors element (remember that /
is located above the root element). And if the current node is the authors element, then
the element xsl:apply-templates select="author" causes the template for the author
elements to be applied to all author children of the authors element.

It is good practice to define a template for each element type in the document.
Even if no specific processing is applied to certain elements, like in our example, the
xsl:apply-templates element should be used. That way, we work our way from the root
to the leaves of the tree, and all templates are indeed applied.

Now we turn our attention to attributes. Suppose we wish to process the element

<person firstname="John" lastname="Woo" />

with XSLT. Let us attempt the easiest task imaginable, a transformation of the element

to itself. One might be tempted to write

<xsl:template match="person">

A.5 Processing 263

<person
firstname="<xsl:value-of select="0firstname">"
lastname="<xsl:value-of select="@lastname">"/>

< /xsl:template>

However, this is not a well-formed XML document because tags are not allowed within
the values of attributes. But the intention is clear; we wish to add attribute values into
the template. In XSLT, data enclosed in curly brackets take the place of the xsl:value-of

element. The correct way to define a template for this example is as follows:

<xsl:template match="person" >
<person
firstname="{@firstname}"
lastname="{@lastname}" />

< /xsl:template>

Finally, we give a transformation example from one XML document to another, which
does not specify the display. Again we use the authors document as input and define

an XSLT document as follows:

<?xml version="1.0" encoding="UTF-16"7>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" >

<xsl:template match="/">
<authors>
<xsl:apply-templates select="authors" />
< /authors>

< /xsl:template>

264

XML Basics

<xsl:template match="authors">
<xsl:apply-templates select="author" />

< /xsl:template>

<xsl:template match="author" >
<author>
<name><xsl:value-of select="name"/></name>
<contact>
<institute>
<xsl:value-of select="affiliation" />
< /institute>
<email><xsl:value-of select="email"/></email>
< [contact>
< /author>

< /xsl:template>

< /xsl:stylesheet>

The tree representation of the output document is shown in figure A.6 to illustrate the

tree transformation character of XSLT.

A.5 Processing 265

| | |
| | | | | \
! ! ! ! ! Al

ga@tzi.de

David
Billington

Grigoris
Antoniou

Griffith
University

University
of Bremen

davidegu.edu.net

| | | \

| | | N
University ga@tzi.de Griffith davidegu.edu.net
of Bremen University

Figure A.6: XSLT as tree transformation

Index

#PCDATA, 234

AAT, 198

annotation, 104

Art and Architecture Thesaurus, 198
artificial intelligence, 15
asymmetric property, 106

attribute types, 236, 242

automated reasoning benefits, 96

axiomatic semantics, 55

BBC Artists, 180
BBC World Cup Website, 182
BioPortal, 200

cancer ontology, 198
cardinality restrictions, 118
CDATA, 236

class equivalence, 111

class hierarchy, 41

classes, 40

complement, 113

complete proof system, 132

composite properties, 106

constant, 138
CSS2, 258
Cyc, 199

data model, 23

data type, 32, 243

data type extension, 244
data type restriction, 245
data.gov, 187
database-RDF mapping, 208
datatype properties, 104
DBpedia, 200

decidability, 96

default graph, 36

defeasible logic program, 160
defeasible rule, 160

definite logic program, 133
dereferencable URL, 26
Description Logic, 92
design principles, 2

disjoint, 113

disjoint properties, 109

DLP, 124

266

INDEX

267

Document Object Model, 24
domain, 41, 108

domain independent, 24
downward compatibility, 16

DTD, 233

e-commerce, 176

element types, 241
enumeration, 112
equivalent properties, 109
existential restriction, 116
explanations, 14

explicit metadata, 7

eXtensible Markup Language, 8

fact, 140

filter expression, 254

first-order logic, 131

five star linked data publishing, 186
follow your nose principle, 87
follows, 142

formal semantics, 93

function symbol, 138

functional property, 107

goal, 140
GoodRelations, 176
government data, 185

graph, 27

homonym problem, 26

Horn logic, 14, 133

Iconclass, 198

ID, 236

identity, 122
IDREF, 236
IDREFS, 236
inference system, 62
inheritance, 43
instances, 40
intersection, 115

inverse properties, 108

knowledge representation, 4, 131

Large Knowledge Collidor, 224
layer, 16

linked data principles, 29
literal, 32

Literals, 27

logic, 12, 131

logic layer, 18

machine learning, 201
model, 142
monotonic logic program, 140

monotonic rule, 134, 139

named datatype, 119

268

INDEX

named graph, 30

named graphs, 35
namespace, 18, 33, 103, 248
necessary condition, 116
New York Times, 188
nonmonotonic rule, 134

nonmonotonic rule system, 158

object, 27

object properties, 104

On-To-Knowledge, 212

ontology, 10

ontology alignment, 206

Ontology Alignment Evaluation
Initiative, 207

ontology development process, 194

ontology expressivity, 94

ontology integration, 206

ontology mapping, 206

Open Directory, 199

open world assumption, 78, 122

OpenCalais, 190

OWL functional syntax, 101

OWL imports, 103

OWL Lite, 97

OWL Manchester syntax, 102

OWL Working Group, 91

OWL xml syntax, 101

OWL2,91

OWL2 DL, 98

OWL2 EL, 124

OWL2 Full, 97

OWL2 keys, 120

OWL2 profile, 123
OWL2 QL, 124
OWL2RL, 124
owl:equivalentClass, 111
owl:sameAs, 122

owl:SymmetricProperty, 106

path expression, 251
predicate, 138
predicate logic, 131
Prefix.cc, 201
priority, 159

Product Ontology, 178
proof layer, 18

proof system, 132
property, 26, 41
property chains, 109
property hierarchy, 44
provenance, 224

punning, 112

qualified name, 33

range, 41, 108

INDEX

269

RDF, 23

RDF Schema, 40
RDF/XML, 37
rdf:Property, 46
rdf:Statement, 46
rdf:type, 46

RDFa, 38

RDFS, 40

rdfs:Class, 46
rdfs:comment, 49
rdfs:domain, 47
rdfs:isDefinedBy, 48
rdfs:label, 49
rdfs:Literal, 46
rdfs:range, 47
rdfs:Resource, 46
rdfs:seeAlso, 48
rdfs:subClassOf, 47
rdfs:subPropertyOf, 47
reasoning support, 96
reflexive property, 107
reification, 29
relational databases, 208
resource, 26

RIF, 148

RIF-BLD, 150

root, 232

root element, 232
rule body, 139, 160
rule head, 139, 160
RuleML, 165

rules, 14, 133

schema queries, 83
Schema.org, 192

semantic interoperability, 11
semantics, 12, 23, 93

Sig.ma, 189

Sindice, 189

SLD resolution, 145

sound proof system, 132
SPARQL, 69

SPARQL aggregate functions, 81
SPARQL endpoint, 70
SPARQL filters, 75

SPARQL graph patterns, 71
SPARQL organizing results, 80
SPARQL property paths, 74
SPARQL result bindings, 72
SPARQL Update, 70, 85

SPIN, 156

Standard Upperlevel Ontology, 199
standards, 16

statement, 26

structured datasets, 3

270

INDEX

style sheet, 258
subclass, 41, 111
subject, 27

subproperty, 44
sufficient condition, 116
SUO, 199

superclass, 41

SWRL, 155

symmetric property, 106

syntax, 23, 92

TGN, 198

Thesaurus of Geographic Names, 198
transitive property, 105

triple store, 70

trust layer, 18

Turtle, 31

turtle abbreviations, 33

ULAN, 198

UMLS, 199

Unified Medical Language System, 199
Uniform Resource Identifier, 26
Uniform Resource Locator, 26

union, 114

Union List of Artist Names, 198
universal restriction, 115

upward partial understanding, 17

URI, 26

value restrictions, 117

variable, 138

Web of Data, 28

Web Ontology Working Group, 91
well-defined syntax, 92
well-formed XML document, 230
witness, 144

WordNet, 200

XML, 8

XML attributes, 229
XML declaration, 227
XML document, 227
XML elements, 228
XML entity, 238
XML Schema, 240
XPath, 251

XSL, 258

XSLT, 258

XSLT template, 259

	Contents
	List of Figures
	Series Foreword
	Chapter 1. The Semantic Web Vision
	1.1 Introduction
	1.2 Semantic Web Technologies
	1.3 A Layered Approach
	1.4 Book Overview
	1.5 Summary
	Suggested Reading

	Chapter 2. Describing Web Resources: RDF
	2.1 Introduction
	2.2 RDF: Data Model
	2.3 RDF Syntaxes
	2.4 RDFS: Adding Semantics
	2.5 RDF Schema: The Language
	2.6 RDF and RDF Schema in RDF Schema
	2.7 An Axiomatic Semantics for RDF and RDF Schema
	2.8 A Direct Inference System for RDF and RDFS
	2.9 Summary
	Suggested Reading
	Exercises and Projects

	Chapter 3. Querying the Semantic Web
	3.1 SPARQL Infrastructure
	3.2 Basics: Matching Patterns
	3.3 Filters
	3.4 Constructs for Dealing with an Open World
	3.5 Organizing Result Sets
	3.6 Other Forms of SPARQL Queries
	3.7 Querying Schemas
	3.8 Adding Information with SPARQL Update
	3.9 The Follow Your Nose Principle
	3.10 Summary
	Suggested Reading
	Exercises and Projects

	Chapter 4. Web Ontology Language: OWL2
	4.1 Introduction
	4.2 Requirements for Ontology Languages
	4.3 Compatibility of OWL2 with RDF/RDFS
	4.4 The OWL Language
	4.5 OWL2 Profiles
	4.6 Summary
	Suggested Reading
	Exercises and Projects

	Chapter 5. Logic and Inference: Rules
	5.1 Introduction
	5.2 Example of Monotonic Rules: Family Relationships
	5.3 Monotonic Rules: Syntax
	5.4 Monotonic Rules: Semantics
	5.5 OWL2 RL: Description Logic Meets Rules
	5.6 Rule Interchange Format: RIF
	5.7 SemanticWeb Rules Language (SWRL)
	5.8 Rules in SPARQL: SPIN
	5.9 Nonmonotonic Rules: Motivation and Syntax
	5.10 Example of Nonmonotonic Rules: Brokered Trade
	5.11 Rule Markup Language (RuleML)
	5.12 Summary
	Suggested Reading
	Exercises and Projects

	Chapter 6. Applications
	6.1 GoodRelations
	6.2 BBC Artists
	6.3 BBC World Cup 2010 Website
	6.4 Government Data
	6.5 New York Times
	6.6 Sig.ma and Sindice
	6.7 OpenCalais
	6.8 Schema.org
	6.9 Summary

	Chapter 7. Ontology Engineering
	7.1 Introduction
	7.2 Constructing Ontologies Manually
	7.3 Reusing Existing Ontologies
	7.4 Semiautomatic Ontology Acquisition
	7.5 Ontology Mapping
	7.6 Exposing Relational Databases
	7.7 SemanticWeb Application Architecture
	Suggested Reading
	Exercises and Projects

	Chapter 8. Conclusion
	8.1 Principles
	8.2 Where Next?

	Appendix A. XML Basics
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /None
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

