Vũ trụ trông như thế nào khi phá vỡ tốc độ ánh sáng?

Cryolite.11

Member
https://zingnews.vn/vu-tru-trong-nhu-the-nao-khi-pha-vo-toc-do-anh-sang-post1390303.html
Mới đây, các nhà nghiên cứu từ Ba Lan và Singapore đã đưa ra một hệ thống lý thuyết ánh sáng mới không mâu thuẫn với thuyết tương đối hẹp của Einstein.

5cd7151fe9e331bd68f2_1.jpg
Nghiên cứu mới đặt ra ý tưởng trái với lý thuyết ba chiều không gian và một chiều thời gian mà chúng ta đều quen thuộc. Ảnh: Sciencealert.

Không gì có thể đi nhanh hơn ánh sáng. Đó là một quy tắc vật lý trong thuyết tương đối hẹp của Einstein. Một cái gì đó diễn ra càng nhanh, viễn cảnh bị đóng băng thời gian càng gần với sự bế tắc.

Đi nhanh hơn, bạn sẽ gặp các vấn đề với việc đảo ngược thời gian, làm rối tung các khái niệm về quan hệ nhân quả.

Nhưng các nhà nghiên cứu từ Đại học Warsaw (Ba Lan) và Đại học Quốc gia Singapore hiện đã vượt qua ranh giới của thuyết tương đối để đưa ra hệ thống không mâu thuẫn với lý thuyết vật lý hiện tại, thậm chí có thể mở đường cho những lý thuyết mới, theo Sciencealert.

Nghiên cứu mới​

Theo đó, ý tưởng được đưa ra là một “phần mở rộng thuyết tương đối hẹp” kết hợp ba chiều thời gian với một chiều không gian duy nhất (“1+3 không-thời gian”). Điều này trái với lý thuyết ba chiều không gian và một chiều thời gian mà chúng ta đều quen thuộc.

Thay vì tạo ra bất kỳ mâu thuẫn logic lớn nào, nghiên cứu mới bổ sung thêm bằng chứng, chứng minh ý tưởng rằng các vật thể có thể di chuyển nhanh hơn ánh sáng mà không vi phạm hoàn toàn các định luật vật lý hiện có.

“Không lý do cơ bản nào giải thích việc những người quan sát chuyển động liên quan đến các hệ vật lý (được mô tả với vận tốc lớn hơn tốc độ ánh sáng) lại không bị ảnh hưởng bởi nó”, nhà vật lý Andrei Dragan, Đại học Warsaw ở Ba Lan, nói.

Nghiên cứu mới này dựa trên công trình nghiên cứu trước đây của một số nhà nghiên cứu cho rằng quan điểm siêu sáng có thể giúp liên kết cơ học lượng tử với cơ học của thuyết tương đối hẹp - 2 nhánh vật lý không thể dung hòa thành một lý thuyết bao quát, mô tả lực hấp dẫn giống như cách chúng ta giải thích các lực khác.

Các hạt không còn có thể được mô hình hóa thành các vật thể dạng điểm trong khuôn khổ này - giống như cách chúng ta có thể làm trong viễn cảnh 3D của vũ trụ thông thường (ngoài thời gian).

Thay vào đó, để hiểu những gì người quan sát có thể nhìn thấy và cách một hạt siêu sáng có thể hoạt động, các nhà nghiên cứu chuyển sang các loại lý thuyết trường làm nền tảng cho vật lý lượng tử.

Dựa trên mô hình mới này, các vật thể siêu sáng sẽ trông giống một hạt đang giãn nở như bong bóng trong không gian - tương tự một làn sóng trong trường. Mặt khác, đối tượng tốc độ cao sẽ trải qua một số mốc thời gian khác nhau.

Dù vậy, tốc độ ánh sáng trong chân không sẽ không đổi ngay cả đối với những người quan sát đi nhanh hơn nó, điều này bảo toàn một trong những nguyên tắc cơ bản của Einstein - một nguyên tắc trước đây chỉ được nghĩ đến liên quan đến những người quan sát đi chậm hơn tốc độ ánh sáng

“Định nghĩa mới này bảo toàn định đề của Einstein về sự không đổi của tốc độ ánh sáng trong chân không, ngay cả đối với những người quan sát siêu sáng. Vì vậy, thuyết tương đối đặc biệt mở rộng của chúng tôi dường như không phải là một ý tưởng xa vời”, nhà vật lý Andrei Dragan nói.

toc do anh sang anh 1
Nghiên cứu mới trả lời nhiều câu hỏi, nhưng cũng đặt ra câu hỏi mới. Ảnh: Independent.

Nhiều câu hỏi được đặt ra​

Tuy nhiên, các nhà nghiên cứu thừa nhận rằng việc chuyển sang mô hình không - thời gian 1+3 sẽ đặt ra một số câu hỏi mới, đồng thời trả lời những câu hỏi khác. Họ gợi ý cần phải mở rộng thuyết tương đối hẹp để kết hợp các hệ quy chiếu nhanh hơn ánh sáng.

Điều này có thể bao gồm việc vay mượn từ lý thuyết trường lượng tử, sau đó kết hợp các khái niệm từ thuyết tương đối hẹp, cơ học lượng tử và lý thuyết trường cổ điển (nhằm mục đích dự đoán cách các trường vật lý tương tác với nhau).

Nếu các nhà vật lý đúng, tất cả hạt của vũ trụ sẽ có những tính chất khác thường trong thuyết tương đối hẹp mở rộng.

Một trong những câu hỏi mà nghiên cứu đặt ra là liệu chúng ta có thể quan sát hành vi mở rộng này hay không. Nhưng việc trả lời sẽ mất rất nhiều thời gian và cần nhiều nhà khoa học hơn.

...
 
Nhiều khi người ta cứ bày vẽ lên thôi chứ theo tôi thì vượt qua tốc độ ánh sáng chỉ đơn giản là đi nhanh hơn thôi.
Ví dụ 1 trái đất -> mặt trời là 8 phút ánh sáng thì đi và vận tốc x2 vận tốc ánh sáng sẽ mất 4 phút.
Chả có lí do gì để việc đi nhanh hơn lại phá vỡ không gian thời gian đc cả.
 
Nhiều khi người ta cứ bày vẽ lên thôi chứ theo tôi thì vượt qua tốc độ ánh sáng chỉ đơn giản là đi nhanh hơn thôi.
Ví dụ 1 trái đất -> mặt trời là 8 phút ánh sáng thì đi và vận tốc x2 vận tốc ánh sáng sẽ mất 4 phút.
Chả có lí do gì để việc đi nhanh hơn lại phá vỡ không gian thời gian đc cả.

Thời gian là của loài người thôi :whistle: chứ thực ra làm gì có thời gian

Gửi từ Samsung A52S 5G bằng vozFApp
 
Nhiều khi người ta cứ bày vẽ lên thôi chứ theo tôi thì vượt qua tốc độ ánh sáng chỉ đơn giản là đi nhanh hơn thôi.
Ví dụ 1 trái đất -> mặt trời là 8 phút ánh sáng thì đi và vận tốc x2 vận tốc ánh sáng sẽ mất 4 phút.
Chả có lí do gì để việc đi nhanh hơn lại phá vỡ không gian thời gian đc cả.
Vì khi 1 vật có khối lượng, tăng tốc đến một mức nào đó gần bằng tốc độ ánh sáng, thì khối lượng của nó cũng tăng lên (qua các công thức bla bla...). Mà khối lượng tăng lên đến mức nào đó thì bẻ cong không gian (qua lực hấp dẫn, công thức bla bla...). Hậu quả là như người ta vẽ ra :sweat:

Tất nhiên trên lý thuyết thôi chứ chưa test vật khối lượng to được.
 
Nhiều khi người ta cứ bày vẽ lên thôi chứ theo tôi thì vượt qua tốc độ ánh sáng chỉ đơn giản là đi nhanh hơn thôi.
Ví dụ 1 trái đất -> mặt trời là 8 phút ánh sáng thì đi và vận tốc x2 vận tốc ánh sáng sẽ mất 4 phút.
Chả có lí do gì để việc đi nhanh hơn lại phá vỡ không gian thời gian đc cả.
Ko phải bày vẽ, theo lý thuyết thì enstein đã chứng mình rằng thời gian là "ko tồn tại" đối với tốc độ ánh sáng. Cụ thể, đối với ánh sáng thì nó tồn tại ở mọi nơi cùng 1 lúc chứ ko phải như mình quan sát là nó mất 8 phút từ trái đất đến mặt trời
 
Vì khi 1 vật có khối lượng, tăng tốc đến một mức nào đó gần bằng tốc độ ánh sáng, thì khối lượng của nó cũng tăng lên (qua các công thức bla bla...). Mà khối lượng tăng lên đến mức nào đó thì bẻ cong không gian (qua lực hấp dẫn, công thức bla bla...). Hậu quả là như người ta vẽ ra :sweat:

Tất nhiên trên lý thuyết thôi chứ chưa test vật khối lượng to được.
Nhỡ nó ko tăng thì sao?
 
Vì khi 1 vật có khối lượng, tăng tốc đến một mức nào đó gần bằng tốc độ ánh sáng, thì khối lượng của nó cũng tăng lên (qua các công thức bla bla...). Mà khối lượng tăng lên đến mức nào đó thì bẻ cong không gian (qua lực hấp dẫn, công thức bla bla...). Hậu quả là như người ta vẽ ra :sweat:

Tất nhiên trên lý thuyết thôi chứ chưa test vật khối lượng to được.
test rồi, và vật đó khối lượng không to lắm (mặt trăng) đã bẻ cong ánh sáng mặt trời
 
Thời gian là một loại chiều trong n chiều. Khi vật tăng tốc càng gần với vận tốc ánh sáng thì khối lượng sẽ tăng theo, tăng đến mức làm cong được cả không-thời gian và vận tốc ánh sáng là vận tốc cao nhất, nó bất định trong toàn vũ trụ. Còn nếu muốn biết di chuyển hơn vận tốc ánh sáng như nào thì đến chân trời sự kiện ở rìa lỗ đen thì sẽ thấy nhé.
2c0ctJV.png


1672667293364.png
 
Back
Top